A Model of Fusion of Information on Image Quality Based on the Dempster-Shafer Theory for Biometric Systems Interoperability

2010 ◽  
Vol 42 (4) ◽  
pp. 66-74
Author(s):  
Yadigar N. Imamverdiev
2002 ◽  
Vol 1804 (1) ◽  
pp. 173-178 ◽  
Author(s):  
Lawrence A. Klein ◽  
Ping Yi ◽  
Hualiang Teng

The Dempster–Shafer theory for data fusion and mining in support of advanced traffic management is introduced and tested. Dempste–Shafer inference is a statistically based classification technique that can be applied to detect traffic events that affect normal traffic operations. It is useful when data or information sources contribute partial information about a scenario, and no single source provides a high probability of identifying the event responsible for the received information. The technique captures and combines whatever information is available from the data sources. Dempster’s rule is applied to determine the most probable event—as that with the largest probability based on the information obtained from all contributing sources. The Dempster–Shafer theory is explained and its implementation described through numerical examples. Field testing of the data fusion technique demonstrated its effectiveness when the probability masses, which quantify the likelihood of the postulated events for the scenario, reflect current traffic and weather conditions.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3727
Author(s):  
Joel Dunham ◽  
Eric Johnson ◽  
Eric Feron ◽  
Brian German

Sensor fusion is a topic central to aerospace engineering and is particularly applicable to unmanned aerial systems (UAS). Evidential Reasoning, also known as Dempster-Shafer theory, is used heavily in sensor fusion for detection classification. High computing requirements typically limit use on small UAS platforms. Valuation networks, the general name given to evidential reasoning networks by Shenoy, provides a means to reduce computing requirements through knowledge structure. However, these networks use conditional probabilities or transition potential matrices to describe the relationships between nodes, which typically require expert information to define and update. This paper proposes and tests a novel method to learn these transition potential matrices based on evidence injected at nodes. Novel refinements to the method are also introduced, demonstrating improvements in capturing the relationships between the node belief distributions. Finally, novel rules are introduced and tested for evidence weighting at nodes during simultaneous evidence injections, correctly balancing the injected evidenced used to learn the transition potential matrices. Together, these methods enable updating a Dempster-Shafer network with significantly less user input, thereby making these networks more useful for scenarios in which sufficient information concerning relationships between nodes is not known a priori.


Energy ◽  
1992 ◽  
Vol 17 (3) ◽  
pp. 205-214
Author(s):  
Aurora A. Kawahara ◽  
Peter M. Williams

2017 ◽  
Vol 47 (6) ◽  
pp. 1551-1561 ◽  
Author(s):  
Paul A. Elmore ◽  
Frederick E. Petry ◽  
Ronald R. Yager

2017 ◽  
Vol 24 (2) ◽  
pp. 653-669 ◽  
Author(s):  
Ningkui WANG ◽  
Daijun WEI

Environmental impact assessment (EIA) is usually evaluated by many factors influenced by various kinds of uncertainty or fuzziness. As a result, the key issues of EIA problem are to rep­resent and deal with the uncertain or fuzzy information. D numbers theory, as the extension of Dempster-Shafer theory of evidence, is a desirable tool that can express uncertainty and fuzziness, both complete and incomplete, quantitative or qualitative. However, some shortcomings do exist in D numbers combination process, the commutative property is not well considered when multiple D numbers are combined. Though some attempts have made to solve this problem, the previous method is not appropriate and convenience as more information about the given evaluations rep­resented by D numbers are needed. In this paper, a data-driven D numbers combination rule is proposed, commutative property is well considered in the proposed method. In the combination process, there does not require any new information except the original D numbers. An illustrative example is provided to demonstrate the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document