Non-Linear Filtration Through Stratified Porous Media: An Experimental Approach to Model the Volumetric Flow Rate and Pressure Drop Relationship

Author(s):  
Ashes Banerjee ◽  
Srinivas Pasupuleti ◽  
Vasant Govind Kumar Villuri ◽  
Abhay Kumar Pushkar ◽  
Rajesh Nune ◽  
...  
1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.


2021 ◽  
Vol 130 (4) ◽  
Author(s):  
Ashes Banerjee ◽  
Srinivas Pasupuleti ◽  
Mritunjay Kumar Singh ◽  
Dandu Jagan Mohan

2020 ◽  
pp. 0958305X2094531
Author(s):  
Hebert Lugo-Granados ◽  
Lázaro Canizalez-Dávalos ◽  
Martín Picón-Núñez

The aim of this paper is to develop guidelines for the placing of new coolers in cooling systems subject to retrofit. The effects of the accumulation of scale on the flow system are considered. A methodology to assess the interconnected effect of local fluid velocity and fouling deposition is developed. The local average fluid velocity depends on the water flow rate distribution across the piping network. The methodology has four main calculation components: a) the determination of the flow rate distribution across the piping network, b) the prediction of fouling deposition, c) determination of the hydraulic changes and the effect on fouling brought about by the placing of new exchangers into an existing structure, and d) the calculation of the total cooling load and pressure drop of the system. The set of disturbances introduced to the system through fouling and the incorporation of new coolers, create network responses that eventually influence the cooling capacity and the pressure drop. In this work, these interactions are analysed using two case studies. The results indicate that, from the thermal point of view, the incorporation of new heat exchangers is recommended in series. The limit is the point where the increase of the total pressure drop causes a reduction in the overall volumetric flow rate. New coolers added in parallel create a reduction of pressure drop and an increase in the overall water flow rate; however, this increase is not enough to counteract the reduction of fluid velocity and heat capacity removal.


2012 ◽  
Vol 170-173 ◽  
pp. 2601-2608
Author(s):  
Xue Li Xia ◽  
Hong Fu Qiang ◽  
Wang Guang

To evaluate the effect of a converging injector geometry, volumetric flow rate and gallant content on the pressure drop, the velocity and viscosity fields, the governing equations of the steady, incompressible, isothermal, laminar flow of a Power-Law, shear-thinning gel propellant in a converging injector were formulated, discretized and solved. A SIMPLEC numerical algorithm was applied for the solution of the flow field. The results indicate that the mean apparent viscosity decreases with increasing the volumetric flow rate and increasing the gallant content results in an increase in the viscosity. The results indicate also that the convergence angle can produce additional decrease in the mean apparent viscosity of the fluid. The mean apparent viscosity decreases significantly with increasing the convergence angle of the injector, and its value is limited by the Newtonian viscosity η∞. The effect of the convergence angle on the mean apparent viscosity is more significant than the effect of the volumetric flow rate and the gallant content on the mean apparent viscosity. Additional decreasing the viscosity results in increasing the pressure drop with increasing convergence angle. It is important to injector design that the viscosity decreasing and the pressure drop increasing are took into account together.


2021 ◽  
Vol 11 (22) ◽  
pp. 10708
Author(s):  
Adel Almoslh ◽  
Falah Alobaid ◽  
Christian Heinze ◽  
Bernd Epple

An experimental study was conducted in the sieve tray column to investigate the influence of gas flow rate on the hydrodynamic characteristics of the sieve tray, such as total tray pressure drop, wet tray pressure drop, dry tray pressure drop, clear liquid height, liquid holdup, and froth height. The hydrodynamic characteristics of the sieve tray were investigated for the gas/water system at different gas flow rates from 12 to 24 Nm3/h and at different pressures of 0.22, 0.24, and 0.26 MPa. In this study, a simulated waste gas was used that consisted of 30% CO2 and 70% air. The inlet volumetric flow rate of the water was 0.148 m3/h. The temperature of the inlet water was 19.5 °C. The results showed that the gas flow rate has a significant effect on the hydrodynamic characteristics of the tray. The authors investigated the effect of changing these hydrodynamic characteristics on the performance of a tray column used for CO2 capture.


2018 ◽  
Vol 23 (1) ◽  
pp. 187-211 ◽  
Author(s):  
A. Walicka

AbstractIn this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.


Author(s):  
M. Gehring

AbstractWith constant volumetric flow rate F at the end of the test specimen the pressure drop is dependent on the absolute pressure under which the volumetric flow rate is measured. The correlation between pressure drop Dp at the test specimen and volumetric flow rate F can be adequately described byin which k is a constant for a certain object measured and p* designates the pressure under which the volumetric flow rate F is measured. p1 and p2 are the absolute pressures at the test specimen entrance and exit respectively. For the definition of draw resistance it results from this that the Coresta suggestion that p1 = 1 atm 760 Torr be determined as reference pressure is inexpedient for practical purposes. It would be more expedient to determine p* = p2 = 1 atm 760 Torr, i. e. that pressure is determined as reference pressure under which the volumetric flow rate F is measured at the end of the test specimen. The simple correction formulae resulting for this with fluctuating atmospheric pressure are quoted.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2179
Author(s):  
Jonathan Graciano-Uribe ◽  
Toni Pujol ◽  
Jaume Puig-Bargués ◽  
Miquel Duran-Ros ◽  
Gerard Arbat ◽  
...  

The small open area available at the slots of underdrains in pressurized granular bed filters for drip irrigation implies: (1) the existence of a region with non-uniform flow, and (2) local values of modified particle Reynolds number >500. These flow conditions may disagree with those accepted as valid for common pressure drop-flow rate correlations proposed for packed beds. Here, we carried out detailed computational fluid dynamics (CFD) simulations of a laboratory filter to analyze the results obtained with five different equations of head losses in porous media: (1) Ergun, (2) Darcy-Forchheimer, (3) Darcy, (4) Kozeny-Carman and (5) power function. Simulations were compared with experimental data at different superficial velocities obtained from previous studies. Results for two silica sand media indicated that all equations predicted total filter pressure drop values within the experimental uncertainty range when superficial velocities <38.3 m h−1. At higher flow rates, Ergun equation approximated the best to the observed results for silica sand media, being the expression recommended. A simple analytical model of the pressure drop along flow streamlines that matched CFD simulation results was developed.


Sign in / Sign up

Export Citation Format

Share Document