scholarly journals Experimental and theoretical evidence for the load sequence effect in the compressive fatigue behavior of concrete

2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Abedulgader Baktheer ◽  
Rostislav Chudoba

AbstractA realistic prediction of the concrete fatigue life exposed to high-cycle loading scenarios with variable amplitudes is of utmost importance for a reliable and economically efficient design of civil engineering infrastructure for transport and energy supply. Current design codes estimate the fatigue life under variable amplitudes using the Palmgren–Miner rule, which assumes a linear scaling between lifetimes measured for uniform cyclic loading scenarios. Several experimental series conducted in the past, however, indicate that this assumption is not valid and that it may lead to unsafe design. In this paper, an experimental and theoretical investigations of the fatigue loading sequence effect in normal- and high-strength concrete behavior are presented, which confirm this observation. In particular, a test campaign with 135 cylinder specimens, including three concrete grades and six different loading scenarios has been conducted. Several response characteristics of the fatigue behavior including Wöhler curves, fatigue creep curves and evolving shapes of hysteretic loops have been evaluated. To substantiate the experimental results, a theoretical explanation of the observed sequence effect is formulated based on the assumption, that energy is dissipated uniformly within the volume of a test specimen during subcritical, compressive cyclic loading. Then, superposition of energy dissipation profiles along the lifetime measured for constant amplitudes becomes possible and a theoretical justification of the experimentally observed sequence effect can be provided. Moreover, a reverse sequence effect reported in the literature for bending fatigue of concrete can then be explained by an unevenly distributed energy dissipation over a cracked specimen. Supported by the theoretical consideration, the processed experimental data is used to validate existing fatigue life assessment rules by testing their ability to reflect the load sequence effect.

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881101 ◽  
Author(s):  
Yaliang Liu ◽  
Yibo Sun ◽  
Yang Sun ◽  
Hongji Xu ◽  
Xinhua Yang

Spot welding of dissimilar materials can utilize the respective advantage comprehensively, of which reliable prediction of fatigue life is the key issue in the structure design and service process. Taking into account almost all the complex factors that have effects on the fatigue behavior such as load level, thickness, welding nugget diameter, vibrational frequency, and material properties, this article proposed an energy dissipation-based method that is able to predict the fatigue life for spot-welded dissimilar materials rapidly. In order to obtain the temperature gradient, the temperature variations of four-group spot-welded joint of SUS301 L-DLT stainless steel and Q235 carbon steel during high-cycle fatigue tests were monitored by thermal infrared scanner. Specifically, temperature variation disciplines of specimen surface were divided into four stages: temperature increase, temperature decrease, continuous steady increase in temperature, and ultimate drop after the fracture. The material constant C that a spot-welded joint of dissimilar material needs to reach fracture is 0.05425°C·mm3. When the specimen was applied higher than the fatigue limit, the highest error between experimental values and predicted values is 18.90%, and others are lower than 10%. Therefore, a good agreement was achieved in fatigue life prediction between the new method and the validation test results.


Author(s):  
Ravi Pratap Singh Tomar ◽  
Furkan I. Ulu ◽  
Ajit Kelkar ◽  
Ram V. Mohan

Abstract The utilization of additively manufactured parts is gaining popularity in functional applications. Polymer-based additive manufacturing (AM) parts are utilized in a variety of engineering applications for automotive, aerospace, and energy. AM printed parts are however newer class of materials, and structural performance of these materials is not fully understood completely, and very limited exists currently on precisely performance of Polyjet printed parts and associated digital materials under fatigue loading. This paper investigates the stiffness degradation under tension-tension fatigue loading of digital polypropylene using homogenous 3-Dimensional test coupons formed using PolyJet printing. Homogeneous 3-Dimensional test configuration employed in the present study eliminates the process-induced limitations of traditional ASTM D638 2D fatigue test coupons for AM processed materials. Fatigue data is analyzed to present an empirical model of effective elastic modulus and an analytical model of the accumulated damage state, as defined on the basis of stiffness degradation during cyclic loading. Further, the actual damage accumulation due to cyclic loading with the predicted model is compared. Modeling of the S-N diagram provides a better estimation of fatigue life and fatigue life modeling of AM printed test coupons and is obtained via linear regression analysis of experimental data with high correlation coefficient R2 (0.9971). The analytical model of the accumulated damage state is based on the stiffness degradation and is derived from the regression analysis of experimental data of stiffness degradation at different loading percentages assuming a polynomial of degree 4. Present study provides insight into the fatigue damage state and cyclic performance of digital polypropylene from Polyjet printing.


2005 ◽  
Vol 297-300 ◽  
pp. 1291-1296 ◽  
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of this paper are to identify the impact damage behavior of plain-weave E-glass/epoxy composites and predict the fatigue life of the composites with impact-induced damage under constant amplitude loading. To identify these behaviors, the low velocity impact and fatigue after impact tests are performed for glass/epoxy composites having two types of fiber orientations. The impact damage behavior is dependent on the fiber orientation of the composites. The fatigue life of the impacted composites can be identified through the prediction model, which was proposed on the carbon/epoxy laminates by authors regardless of fiber orientations.


Author(s):  
Mohamed E. M. El-Sayed

Fatigue is the most critical failure mode of many mechanical component. Therefore, fatigue life assessment under fluctuating loads during component development is essential. The most important requirement for any fatigue life assessment is knowledge of the relationships between stresses, strains, and fatigue life for the material under consideration. These relationships, for any given material, are mostly unique and dependent on its fatigue behavior. Since the work of Wöhler in the 1850’s, the uniaxial stress versus cycles to fatigue failure, which is known as the S-N curve, is typically utilized for high-cycle fatigue. In general, high cycle fatigue implies linear elastic behavior and causes failure after more than 104 or 105 cycles. However. the transition from low cycle fatigue to high cycle fatigue, which is unique for each material based on its properties, has not been well examined. In this paper, this transition is studied and a material dependent number of cycles for the transition is derived based on the material properties. Some implications of this derivation, on assessing and approximating the crack initiation fatigue life, are also discussed.


2020 ◽  
Vol 54 (27) ◽  
pp. 4215-4230
Author(s):  
Marc-Claudel Deluy ◽  
Mohamed Khay ◽  
Anh Dung Ngo ◽  
Martine Dubé ◽  
Rajamohan Ganesan

The objective of this work is to investigate the effects of environmental conditions on the axial fatigue behavior of a carbon/epoxy plain-weave laminate with an embedded flaw subjected to a partially reversed cyclic load (stress ratio R = −0.1) in tension–compression. This specific material is more commonly used in aerospace engineering for the manufacturing of aircraft structural parts, which are directly exposed to various environmental conditions during service. Specific environmental and loading conditions that are appropriate to simulate real-life conditions are considered to observe and collect information about the material's behavior. For the investigation, dry and wet coupons were submitted to room temperature, 82 and 121 ℃ under loading frequencies of 7 and 15 Hz. A maximum allowable strain increase criterion is used to monitor the flaw growth threshold or delamination onset, during fatigue testing. The ultrasonic imaging (C-scan) technique is used to verify and confirm the delamination onset. Results show that the delamination onset strain increase criterion, along with fatigue life, generally decreased as the operating temperature and humidity were increased and that frequency had little effect on the delamination onset fatigue life. The S– N curves obtained from the tension–compression fatigue data were then compared to those of a previous work carried out in tension–tension fatigue loading. Results show a clear degradation in the delamination onset fatigue life of the coupons tested under tension–tension cyclic loading when the minimum tensile component of the cyclic load was replaced with a compressive load of the same magnitude.


2018 ◽  
Vol 165 ◽  
pp. 08002 ◽  
Author(s):  
Hamza Lamnii ◽  
Moussa Nait-Abdelaziz ◽  
Georges Ayoub ◽  
Jean-Michel Gloaguen ◽  
Ulrich Maschke ◽  
...  

Polymers operating in various weathering conditions must be assessed for lifetime performance. Particularly, ultraviolet (UV) radiations alters the chemical structure and therefore affect the mechanical and fatigue properties. The UV irradiation alters the polymer chemical structure, which results into a degradation of the mechanical and fatigue behavior of the polymer. The polymer properties degradation due to UV irradiation is the result of a competitive process of chain scission versus post-crosslinking. Although few studied investigated the effect of UV irradiation on the mechanical behaviour of thermoplastics, fewer examined the UV irradiation effect on the fatigue life of polymers. This study focuses on investigating the effect of UV irradiation on the fatigue properties of bulk semi-crystalline polymer; the low density Polyethylene (LDPE). Tensile specimens were exposed to different dose values of UV irradiation then subjected to fatigue loading. The fatigue tests were achieved under constant stress amplitude at a frequency of 1Hz. The results show an important decrease of the fatigue limit with increasing absorbed UV irradiation dose.


Author(s):  
Jefferson Cuadra ◽  
Kavan Hazeli ◽  
Michael Cabal ◽  
Antonios Kontsos

The reliable characterization of fatigue behavior and progressive damage of advanced alloys relies on the monitoring and quantification of parameters such as strain localizations as a result of both crystallographic deformation mechanisms and bulk response. To this aim, this article attempts to directly correlate microstructural strain at specific fatigue life to global strain as well as surface roughness in Magnesium alloys. Strain at the grain scale is calculated using Digital Image Correlation (DIC), while surface topography gradients are computed using roughness data at different stages of the fatigue life. The results are further correlated to Electron Back Scatter Diffraction (EBSD) measurements which reveal the profuse and spatially inhomogeneous nature of the crystallographic deformation mechanisms related to yielding and fatigue crack initiation. Emphasis is given on using multimodal NDE data to formulate first a description of the current state of the material subjected to fatigue loading and on identifying conditions that can probabilistically drive the affected by both local and global response, governing degradation process.


2006 ◽  
Vol 324-325 ◽  
pp. 959-962
Author(s):  
Yao Chun Zhang ◽  
Wei An Lian ◽  
Wen Yuan Zhang

The low cycle fatigue behavior and energy dissipation capacity around the weak axis of the welded I-section bracing members are investigated by 35 pinned-pinned bracing specimen tests under the axial cyclic loading with different characteristics. Particular attention is paid to the effects of loading amplitude, loading history and geometry properties of these members. It is found that the fatigue damage propagating to fracture in the flanges of the bracing members can be divided into 3 stages involving the macroscopic surface crack initiation, the penetrated crack formation and the penetrated crack propagation. Some empirical formulas to estimate the fatigue life and cyclic energy dissipation capacity of the bracing members are also presented based on the experimental data. The statistical analysis indicates that the fatigue life to surface crack initiation significantly depends on the inelastic local buckling and will increase with decreasing width-thickness ratio of the flanges and increasing slenderness ratios of the bracing members. Besides, it is found that the low cycle fatigue and energy dissipation of these members also depends on loading amplitude and loading history, and the effects of overloads and mean compression amplitude can improve the fatigue performance of bracing members. The test results show that the bracing members with better low-cycle fatigue resistance have the better energy dissipation capacities.


Author(s):  
SMJ Razavi ◽  
MR Ayatollahi ◽  
M Samari ◽  
LFM da Silva

This paper addresses numerical and experimental examination of the role of zigzag interface shapes on the load bearing capacity and fatigue life of adhesively bonded single lap joints. Aluminum adherends with non-flat zigzag interfaces were tested under both quasi-static and fatigue loading conditions. The quasi-static test results revealed that the non-flat adhesive joints have higher load bearing capacity compared to the conventional flat single lap joints. Comparative fatigue tests with different loading levels revealed that the non-flat zigzag single lap joint had considerably higher fatigue life than the conventional lap joint.


Sign in / Sign up

Export Citation Format

Share Document