Secretory patterns of 1α-hydroxycorticosterone in the isolated perifused interrenal gland of the dogfish, Scyliorhinus canicula

1990 ◽  
Vol 5 (1) ◽  
pp. 55-60 ◽  
Author(s):  
L. B. O'Toole ◽  
K.J. Armour ◽  
C. Decourt ◽  
N. Hazon ◽  
B. Lahlou ◽  
...  

ABSTRACT An isolated in-vitro perifused interrenal gland preparation from the dogfish Scyliorhinus canicula was used to study production of quantitatively the major corticosteroid 1α-hydroxycorticosterone (1α-OH-B), measured by radioimmunoassay. Basal secretory rates were 877·1 ± 145 (s.e.m.) fmol/mg per 15 min (n=14) and the preparation remained viable for up to 22 h, as reflected in a brisk response to 10 μm cyclic AMP (cAMP) after this time. Steroid production responded in a dose-dependent manner to porcine ACTH, with 10 μm producing a maximum stimulation of 225% above the basal secretory rate. cAMP (10 μm) produced an increase of 278% above basal, while 1 μm forskolin increased basal secretory rates by 127%. [Val5]- and [Ile5]-angiotensin II (0·1 μm) increased 1α-OH-B production by 120 and 372% respectively over basal secretory rates. Increasing the concentration of K+ in the perfusate from 8 mm to 12, 18, 28 and 40 mm produced a significant rise only at 28 mm. Alterations in the concentration of Na+ and osmolarity of the perifusion medium had inconsistent effects on steroid production. Increased concentrations of urea (from 360 to 720 mm) increased the basal secretory rate by 121%, whilst reducing the concentration of urea (from 360 to 90 mm) had no effect.

1983 ◽  
Vol 245 (4) ◽  
pp. G463-G469
Author(s):  
B. Richelsen ◽  
J. F. Rehfeld ◽  
L. I. Larsson

A technique for studying in vitro release of gastric hormones has been developed. The system utilizes nonenzymatically isolated antropyloric glands from humans or rats, which are perifused in a Bio-Gel P-2 column. The system permits the study of kinetics and dose-response characteristics using the glands as their own control. The glands were stimulated with carbachol and bombesin, and the antral peptides gastrin and somatostatin were measured. Bombesin and carbachol both evoked a dose-dependent stimulation of gastrin release, beginning at below 10(-10) M (bombesin) and 10(-7) M (carbachol). Carbachol inhibited the release of somatostatin in a dose-dependent manner, being maximally effective at 10(-6) M and then producing 60% inhibition of somatostatin release. Bombesin was without effect on antropyloric somatostatin release. These data suggest that the gastrin-stimulating effect of carbachol is partially or totally due to inhibition of somatostatin release, whereas bombesinergic stimulation of gastrin release must work in an independent manner. In addition, data on the effects of these substances on the release of gastrin and ACTH-like peptides from human antropyloric glands are presented. Due to the absence of local neural reflexes, this system is a useful supplement to the isolated perfused stomach model.


1986 ◽  
Vol 109 (1) ◽  
pp. 111-117 ◽  
Author(s):  
F. F. G. Rommerts ◽  
J. W. Hoogerbrugge ◽  
H. J. van der Molen

ABSTRACT After the addition of charcoal-treated testicular fluid to Leydig cells isolated from 22-day-old rats, pregnenolone production could be increased to a maximum of tenfold within 30 min in a dose-dependent manner. Testicular fluid, but not serum, further increased pregnenolone formation threefold when pregnenolone production by Leydig cells was stimulated by the addition of LH-releasing hormone (fourfold), LH (25-fold) and 22R-hydroxycholesterol (300-fold). The effect of testicular fluid on steroid production in the presence of 22R-hydroxycholesterol was not inhibited by cycloheximide whereas cycloheximide completely inhibited the effect of LH. It appears unlikely that steroids, lipoproteins or other plasma components constitute the stimulatory agents in testicular fluid. The biologically active principles may be locally produced factors with a molecular weight > 25 000. Similar biological activities could be shown in testicular lymph from boars but not in systemic lymph from boars nor in charcoal-treated bovine follicular fluid. The presumably locally produced factor(s) may amplify the effect of LH and can thus act as a local modulator(s). J. Endocr. (1986) 109, 111–117


1993 ◽  
Vol 10 (3) ◽  
pp. 235-244 ◽  
Author(s):  
K J Armour ◽  
L B O'Toole ◽  
N Hazon

ABSTRACT An isolated perifused interrenal gland preparation from the lesser-spotted dogfish, Scyliorhinus canicula, was used to investigate the mechanisms of action of ACTH and angiotensin II (AII) on elasmobranch adrenocortical cells. ACTH-stimulated 1α-hydroxycorticosterone secretion was unaffected by dantrolene and significantly decreased in the absence of extracellular calcium. Dibutyryl cyclic AMP produced a dose-dependent increase in 1α-hydroxycorticosterone secretion. The results suggest that the mechanism of ACTH action in elasmobranchs may be similar to that reported for mammals and amphibians, involving the synergistic action of calcium with the cyclic AMP messenger system. AII-stimulated 1α-hydroxycorticosterone secretion was significantly inhibited in the presence of dantrolene and in the absence of extracellular calcium, indicating that both extracellular and intracellular calcium are required for the full action of AII. These results are consistent with results in mammals and amphibians where AII stimulates phosphatidylinositol 4,5-bisphosphate hydrolysis and changes in intracellular calcium concentration, and they suggest that AII may operate via this mechanism to stimulate 1α-hydroxycorticosterone secretion in elasmobranchs.


2006 ◽  
Vol 290 (6) ◽  
pp. R1537-R1541 ◽  
Author(s):  
Kiyoshi Tsukamoto ◽  
Yukiomi Nakade ◽  
Christopher Mantyh ◽  
Kirk Ludwig ◽  
Theodore N. Pappas ◽  
...  

Corticotropin releasing factor (CRF) is one of the most important factors in the mechanism of stress-induced stimulation of colonic motility. However, it is controversial whether stress-induced stimulation of colonic motility is mediated via central or peripheral CRF receptors. We investigated the hypothesis that peripherally injected CRF accelerates colonic motility through the central CRF receptor, but not the peripheral CRF receptor. A strain gauge transducer was sutured on the serosal surface of the proximal colon. Colonic motility was monitored before and after the peripheral injection of CRF. An in vitro muscle strip study was also performed to investigate the peripheral effects of CRF. Subcutaneous injection of CRF (30–100 μg/kg) stimulated colonic motility in a dose-dependent manner. The stimulatory effect of peripherally administered CRF on colonic motility was abolished by truncal vagotomy, hexamethonium, atropine, and intracisternal injection of astressin (a CRF receptor antagonist). No responses to CRF (10−9 −10−7 M) of the muscle strips of the proximal colon were observed. These results suggest that the stimulatory effect of colonic motility in response to peripheral administration of CRF is mediated by the vagus nerve, nicotinic receptors, muscarinic receptors, and CRF receptors of the brain stem. It is concluded that peripherally administered CRF reaches the area postrema and activates the dorsal nucleus of vagi via central CRF receptors, resulting in stimulation of the vagal efferent and cholinergic transmission of the proximal colon.


1981 ◽  
Vol 240 (2) ◽  
pp. H247-H254 ◽  
Author(s):  
N. Toda ◽  
M. Miyazaki

Helically cut strips of dog renal and cerebral (basilar and middle cerebral) arteries contracted with prostaglandin (PG) F2 alpha relaxed in response to angiotensin II (AII; 10(-9) to 10(-7) M) in a dose-dependent manner. In renal arterial strips, the relaxation was preceded by a transient contraction. Both the relaxation and the contraction induced by AII were suppressed by [Sar1,Ala8]AII or [Sar1,Ile8]AII. Treatment with propranolol, atropine, hexamethonium, cocaine, aminophylline, cimetidine, or ouabain failed to alter the relaxing effect of AII. The peptide-induced relaxation was reversed to a contraction by aspirin or indomethacin. Treatment with tranylcypromine or 15-hydroperoxy arachidonic acid suppressed the relaxation induced by AII in renal and cerebral arteries but did not alter relaxations induced by PGI2 or K+ (5 mM). In experiments with superfused dog renal and coronary arteries and rat stomach strips, the renal arteries in response to AII released a prostaglandin like substance; the release was suppressed by [Sar1,Ala8]AII or indomethacin. It appears that the relaxation of isolated dog renal and cerebral arteries induced by AII is mediated by the release of PGI2, which is associated with stimulation of AII receptors.


1987 ◽  
Vol 113 (3) ◽  
pp. 339-348 ◽  
Author(s):  
M. Benyamina ◽  
F. Leboulenger ◽  
I. Lirhmann ◽  
C. Delarue ◽  
M. Feuilloley ◽  
...  

ABSTRACT The effect of cholinergic agonists on glucocorticoid and mineralocorticoid production by frog interrenal (adrenal) tissue was studied in vitro by means of continuous perifusion. Acetylcholine, at doses ranging from 1 to 100 μmol/l, stimulated both corticosterone and aldosterone output in a dose-dependent manner, with a half-maximal effective dose of 2·5 μmol/l. Corticosteroid production was also stimulated by muscarine (10 μmol/l). In contrast, neither nicotine nor nicotine bitartrate (1–100 μmol/l) enhanced corticosteroid biosynthesis. The kinetics of the response of adrenal cells to acetylcholine and muscarine were similar to those observed during angiotensin II stimulation. In particular, a significant reduction (20–40%) in the spontaneous level of corticosteroid production was recorded after the initial infusion of muscarinic agents, but no further decrease in the basal level occurred after a second cholinergic administration. The effect of acetylcholine was blocked by the muscarinic receptor antagonist atropine (10 μmol/l). These results indicate that acetylcholine can stimulate frog adrenocortical cells through muscarinic receptors. Repeated 20-min pulses of acetylcholine (50 μmol/l) or muscarine (10 μmol/l), given at one pulse per 130 min, resulted in a marked reduction in the secretory response to the second pulse. No reduction in the stimulatory effect of acetylcholine or muscarine was observed when a 6·5-h interval separated two 20-min infusions of the secretagogue. In contrast with these findings, iterative pulses of the muscarinic agonist pilocarpine (in the range 1–100 μmol/l) did not cause any desensitization. These data show that the neurotransmitter acetylcholine can modulate frog adrenocortical function and suggest that, in addition to more conventional regulators, i.e. ACTH and angiotensin II, the cholinergic endings of the splanchnic nerve might participate in the regulation of corticosteroid secretion, at least under some physiological conditions such as neurogenic stress. J. Endocr. (1987) 113, 339–348


1984 ◽  
Vol 4 (8) ◽  
pp. 665-671 ◽  
Author(s):  
Noel G. Morgan ◽  
William Montague

Melittin, an amphipathic polypeptide, stimulated the secretion of insulin from rat islets of Langerhans incubated in vitro. The secretory response was dose-dependent and saturable with half the maximal response elicited by a melittin concentration of 4 μg/ml. The response was rapid in onset, an increase in secretion occurring within 2 rain of exposure of the islets to melittin (2 μg/ml). An enhanced secretory rate could be maintained for at least 40 rain in the presence of melittin but declined steadily when the agent was removed. Stimulation of secretion by melittin occurred in the absence of glucose and in the presence of both 4 mM and 8 mM glucose but not in the presence of 20 mM glucose. The effect of melittin on secretion was dependent on the presence of extracellular calcium but was not inhibited by norepinephrine. The data suggest that melittin may be a valuable agent for further study of the role played by the B-cell plasma membrane in the regulation of insulin secretion.


1986 ◽  
Vol 251 (5) ◽  
pp. F851-F857 ◽  
Author(s):  
A. Doucet ◽  
A. Hus-Citharel ◽  
F. Morel

Dexamethasone has been reported to stimulate Na-K-ATPase activity in the medullary thick ascending limb of adrenalectomized animals within a few hours. The present study was aimed at characterizing the mechanism of this action by investigating the stimulatory effect of the hormone in vitro. Dexamethasone (10(-8) M) added in vitro to segments of the medullary thick ascending limb of Henle's loop, which were microdissected from adrenalectomized rats, restored in a dose-dependent manner the depressed Na-K-ATPase activity within one h of incubation. This stimulation of Na-K-ATPase was inhibited by cycloheximide and actinomycin D. Dexamethasone also stimulated the component of oxidative metabolism coupled to sodium transport. These results, which confirm previous in vivo observations, demonstrate that dexamethasone-induced stimulation of Na-K-ATPase is a direct tubular action of the hormone mediated by protein synthesis. They suggest that this short-term effect of dexamethasone corresponds to the stimulation of sodium reabsorption by the dilution segment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 870-870
Author(s):  
Nina Rolf ◽  
Amina Kariminia ◽  
Sabine Ivison ◽  
Kirk R. Schultz

Abstract Abstract 870 Introduction: Despite high cure-rates achieved by an intense chemotherapy regimen in pediatric pre-B ALL, 20% of children suffer relapse after which they face limited therapy options and poor prognosis. New treatment options are urgently needed. Background: Hematopoietic cell transplantation (HCT) has become an important therapy for ALL-relapse, both by eradicating leukemic blasts through myeloablative chemotherapy and by inducing a graft-versus-leukemia effect (GVL). Inadequate post-HCT immune responses can increase risk of relapse, while a GVL effect often comes at the expense of graft-versus-host disease leading to significant morbidity and mortality. Stimulation of Toll-like receptors (TLRs), which detect conserved pathogen- and stressed-self-derived ligands, represents a possible strategy for augmenting anti-ALL immunogenicity. TLR stimulation of antigen-presenting cells induces the expression of co-stimulatory molecules and cytokines, resulting in Th1-polarized immune responses important for anti-tumor responses. Furthermore, it has been shown that TLR stimulation can increase the sensitivity of hematological malignancies to conventional chemotherapeutics (Spaner et al, Leukemia 2010). We have previously used agonists of endosome-localized TLR9 (synthetic CpG-ODN) to enhance anti-ALL immunity (Reid et al, Blood 2005). This approach, which was successful in eliminating leukemia and extending survival in a syngeneic mouse model of minimal residual disease (Seif et al, Blood 2009), is now entering a phase I clinical trial (TACL group). However, our recent research demonstrated that TLR2 receptors, localized on the surface and thus independent of endocytosis, are more abundantly and consistently expressed on pre-B ALL cells. Unlike most other TLRs, which are functionally active as homodimers, TLR2s can form heterodimers with TLR1 or TLR6 suggesting that TLR2 ligands can modulate multiple downstream signaling pathways. Altogether, TLR2 agonists may have better efficacy in generating anti-B-ALL immunity, apoptosis and chemosensitivity. Objective: We tested the hypothesis that i) TLR2 agonists increase pre-B ALL blast sensitivity to doxorubicin (DOX) and asparaginase (ASP) in vitro. We further investigated if ii) distinctive synthetic TLR2 agonists (TLR2/6: Pam2CSK4=Pam2, TLR2/1: Pam3CSK4=Pam3 and FSL-1) differ in their ability to 1) transduce specific signaling pathways, 2) induce apoptosis, and 3) augment pre B-ALL cell immunogenicity. Methods: Pre-B ALL cell lines pre-treated with TLR2 agonists were compared to untreated samples in vitro using the following methods: 1) NFkB phosphorylation (pNFkB) and IkB degradation was detected by flow cytometry in a time and dose-dependent manner; 2) Induction of apoptosis/necrosis of blasts by TLR2 stimulation was examined by flow cytometric detection of AnnexinV/7AAD. 3)In vitro augmentation of immunogenicity was investigated by measuring induction of co-stimulatory molecules and increment of allogeneic T-cell proliferation. Results: 1) Pam2 rapidly and potently induced NFkB signaling (pNFkB 23–42% at 1ug/ml after 15–30min), while Pam3 (10ug/ml) displayed a slow and continuous increment at 60min, thus underlining the differences in signaling kinetics. 2) Pam3 stimulation induced significant, dose-dependent cell death: 36% (6hr), 66% (24hr), 81% (48hr) at 10ug/ml. Unexpectedly, both TLR2/6 agonists, Pam2 and FSL-1, did not induce comparable degree of cell death. Thus, Pam3 killed pre-B ALL cells more potently than therapeutic levels of Doxorubicin (0.005ug/ml) at the earliest time point of 6hr (8.5%) with equal cytotoxicity at 24hr (44%) and 48hr (93%). 3) All TLR2 agonists induced a comparably high expression of CD40/80/86 after 48hr (83-93%/63-76%/84-86%). However, only Pam3 induced a dose-dependent, early CD40 expression at 6hr (32%) and 24hr (60%). Furthermore, blast pre-treatment with Pam3 (but not Pam2) increased the sensitivity to ASP (49%/73% live cells with/without Pam3, respectively). Finally, there was a 30% increase in immunogenicity of pre B-ALL blasts by Pam3 in T-cell alloreactivity studies when compared to medium. Conclusion: TLR2 agonists increased anti-ALL immunogenicity in vitro. Pam3 also had strong cell-death inducing qualities and sensitized pre-B ALL blasts to chemotherapy. This supports that TLR2 agonists have promise for improving relapsed pre-B ALL cure-rates. Disclosures: No relevant conflicts of interest to declare.


1981 ◽  
Vol 241 (2) ◽  
pp. F186-F195
Author(s):  
H. J. Rodriguez ◽  
S. K. Sinha ◽  
J. Starling ◽  
S. Klahr

The effects of single and multiple injections of aldosterone and dexamethasone on renal Na+-K+-ATPase, in vitro renal gluconeogenesis, and urinary electrolyte excretion were examined in adrenalectomized rats in a dose-dependent manner. Single maximal and supramaximal doses of aldosterone (defined by the effect of electrolyte excretion) had no effect on Na+-K+-ATPase or gluconeogenesis. By contrast, a single administration of dexamethasone (in a dose range that increased fasting blood sugar, stimulated renal gluconeogenesis, and had no mineralocorticoid effects) yielded clear-cut activation of Na+-K+-ATPase. Multiple submaximal doses of dexamethasone produced quantitatively similar stimulation of Na+-K+-ATPase and gluconeogenesis. Multiple supramaximal doses of aldosterone stimulated Na+-K+-ATPase and gluconeogenesis, but maximal and submaximal doses of the hormone were without effect. Aldosterone had no effect on hepatic Na+-K+-ATPase or gluconeogenesis. These results suggest that activation of renal Na+-K+-ATPase can be considered a putative glucocorticoid (not mineralocorticoid) effect. Renal Na+-K+-ATPase activation by chronic aldosterone treatment may be mediated by glucocorticoid receptor sites and, hence, may not represent a genuine mineralocorticoid effect.


Sign in / Sign up

Export Citation Format

Share Document