scholarly journals Polar phospholipids from bovine endogenously oxidized low density lipoprotein interfere with follicular thecal function

2005 ◽  
Vol 35 (3) ◽  
pp. 531-545 ◽  
Author(s):  
B Löhrke ◽  
T Viergutz ◽  
B Krüger

The role of endogenously oxidized low density lipoprotein (oxLDL) in follicular steroidogenic regulation is unknown. Information may be important in order to elucidate ovulatory dysregulation in disordered lipid metabolism. To obtain specific data, we studied the effect of polar phospholipids (PL) isolated from oxLDL with different endogenous levels of lipohydroperoxides (LHP) on the thecal expression of mRNA encoding steroidogenic enzymes and cyclooxygenase 2 (COX-2), and on the thecal production of superoxide and progesterone. Large (preovulatory) bovine follicles were used and analyses of thecal fragments from single follicles were performed by radioimmunoassays, chemiluminescence assays and quantitative RT-PCR. Basal concentration of mRNA for several lipoprotein receptors exceeded by about 10-times the basal level of mRNA encoding steroidogenic enzymes, suggesting that preovulatory theca receptors may favour uptake of oxLDL. PL (5–11 pmol phosphorus/ml) decreased (up to 0.5-times the control) progesterone synthesis, production of superoxide and levels of P450 cholesterol side chain cleavage (P450 scc), 3β-hydroxysteroid dehydrogenase and COX-2 mRNA. Abundance of COX-2 transcripts in thecal tissue incubated with forskolin depended on the progesterone/17β-oestradiol ratio of the follicle fluid, i.e. the previous microenvironment in vivo. PL effects were mimicked by the platelet-activating factor (PAF). WEB 2086, a PAF receptor blocker, did not always abolish these responses, suggesting that the effects were not mediated solely by this receptor. PAF interfered dose-dependently with LH-induced responses, indicating interference with LH signalling. PL from mildly oxidized LDL (0.5 nmol/ml LHP) tended to exert greater effects than PL from oxLDL containing 1.5 nmol/ml LHP. In consideration of the known physiologic role of progesterone, COX-2 and possibly superoxide, these results provide evidence for a potential of PL from oxLDL to induce ovulatory dysregulation and suggest that the extent of the LDL oxidation seems to be important for interfering with thecal responses to the preovulatory LH surge.

1996 ◽  
Vol 42 (4) ◽  
pp. 498-506 ◽  
Author(s):  
I Jialal ◽  
S Devaraj

Abstract Cardiovascular disease is the leading cause of mortality in westernized populations. An increased concentration of plasma low-density lipoprotein (LDL) cholesterol constitutes a major risk factor for atherosclerosis. Several lines of evidence support a role for oxidatively modified LDL in atherosclerosis and for its in vivo existence. Antioxidants have been shown to decrease atherosclerotic lesion formation in animal models and decrease LDL oxidation; the evaluation of LDL oxidation in vivo is therefore very important. However, there is a paucity of methods for direct measurement of LDL oxidation. Of the direct methods currently available, the preferred ones seem to be the measurement of F2-isoprostanes, autoantibodies to epitopes on oxidized LDL, and the assessment of antioxidant status. Of the indirect measures, the most uniformly accepted procedure is examining the oxidative susceptibility of isolated LDL by monitoring conjugated diene formation.


1994 ◽  
Vol 35 (4) ◽  
pp. 669-677
Author(s):  
H.N. Hodis ◽  
D.M. Kramsch ◽  
P. Avogaro ◽  
G. Bittolo-Bon ◽  
G. Cazzolato ◽  
...  

2013 ◽  
Vol 305 (2) ◽  
pp. H155-H162 ◽  
Author(s):  
Sayoko Ogura ◽  
Tatsuo Shimosawa ◽  
ShengYu Mu ◽  
Takashi Sonobe ◽  
Fumiko Kawakami-Mori ◽  
...  

Chronic hypoxia is one of the main causes of pulmonary hypertension (PH) associated with ROS production. Lectin-like oxidized low-density lipoprotein receptor (LOX)-1 is known to be an endothelial receptor of oxidized low-density lipoprotein, which is assumed to play a role in the initiation of ROS generation. We investigated the role of LOX-1 and ROS generation in PH and vascular remodeling in LOX-1 transgenic (TG) mice. We maintained 8- to 10-wk-old male LOX-1 TG mice and wild-type (WT) mice in normoxia (room air) or hypoxia (10% O2 chambers) for 3 wk. Right ventricular (RV) systolic pressure (RVSP) was comparable between the two groups under normoxic conditions; however, chronic hypoxia significantly increased RVSP and RV hypertrophy in LOX-1 TG mice compared with WT mice. Medial wall thickness of the pulmonary arteries was significantly greater in LOX-1 TG mice than in WT mice. Furthermore, hypoxia enhanced ROS production and nitrotyrosine expression in LOX-1 TG mice, supporting the observed pathological changes. Administration of the NADPH oxidase inhibitor apocynin caused a significant reduction in PH and vascular remodeling in LOX-1 TG mice. Our results suggest that LOX-1-ROS generation induces the development and progression of PH.


2020 ◽  
Author(s):  
Li Lin ◽  
Ning Zhou ◽  
Le Kang ◽  
Qi Wang ◽  
Jian Wu ◽  
...  

Oxidized low-density lipoprotein (Ox-LDL) can induce cardiac hypertrophy, but the mechanism is still unclear. Here we elucidate the role of angiotensin II (AngII) receptor (AT1-R) in Ox-LDL-induced cardiomycyte hypertrophy. Inhibition of Ox-LDL receptor LOX-1 and AT1-R rather than AngII abolished Ox-LDL-induced hypertrophic responses. Similar results were obtained from the heart of mice lacking endogenous Ang II and their cardiomyocytes. Ox-LDL but not AngII induced binding of LOX-1 to AT1-R, and the inhibition of LOX-1 or AT1-R rather than AngII abolished the association of these two receptors. Ox-LDL-induced ERKs phosphorylation in LOX-1 and AT1-R-overexpression cells and the binding of both receptors were suppressed by the mutants of LOX-1 (Lys266Ala/Lys267Ala) or AT1-R (Glu257Ala), however, the AT1-R mutant lacking Gq protein-coupling ability only abolished the ERKs phosphorylation. The phosphorylation of ERKs induced by Ox-LDL in LOX-1 and AT1-R-overexpression cells was abrogated by Gq protein inhibitor but not by Jak2, Rac1 and RhoA inhibitors. Therefore, the direct interaction between LOX-1 and AT1-R and the downstream Gq protein activation are important mechanisms for Ox-LDL- but not AngII-induced cardiomyocyte hypertrophy


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e58831 ◽  
Author(s):  
Yi-song Xiong ◽  
Juan Yu ◽  
Chang Li ◽  
Lin Zhu ◽  
Li-juan Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document