scholarly journals Warfarin-induced impairment of cortical bone material quality and compensatory adaptation of cortical bone structure to mechanical stimuli

2007 ◽  
Vol 194 (1) ◽  
pp. 213-222 ◽  
Author(s):  
Toshihiro Sugiyama ◽  
Toshiaki Takaki ◽  
Kenya Sakanaka ◽  
Hiroki Sadamaru ◽  
Koji Mori ◽  
...  

Long-term warfarin use has been reported to increase fracture risk of rib and vertebra but not hip in elderly patients, but the mechanisms remain unknown. We hypothesized that warfarin would impair bone material quality but could not weaken bone strength under conditions with higher mechanical stimuli. To test this hypothesis, rats were randomized to vehicle or warfarin group at 4 weeks of age and subsequently weight matched into a sedentary or jumping exercise group at 12 weeks of age. At 6 months of age, osteocalcin content, bone mineral density (BMD), mineral size, material properties, morphological parameters, and biomechanical properties of cortical bones were evaluated. In order to seek evidence for a common mechanism of action, effects of nucleation rate of mineral crystals on their rigidity were also investigated using computer simulation. In humeral cortical bones, warfarin did not change BMD, but markedly decreased osteocalcin content, diminished mineral size, and impaired material hardness. Consistent with these results, our computer-simulation model showed that osteocalcin-induced delay of mineral crystal nucleation decreased mineral formation rate, increased mean and distribution of mineral sizes, and strengthened mineral rigidity. In tibial cortical bones, warfarin decreased material ultimate stress; however, under jumping exercise, warfarin increased cross-sectional total and bone areas of these tibiae and completely maintained their biomechanical properties including work to failure. Collectively, our findings suggest that long-term warfarin therapy weakens rib and vertebra by impairing cortical bone material quality due to a marked decrease in osteocalcin content but could not reduce hip strength through compensatory adaptation of cortical bone structure to higher mechanical stimuli.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Vit Zikan

Multiple sclerosis (MS) is a gait disorder characterized by acute episodes of neurological defects leading to progressive disability. Patients with MS have multiple risk factors for osteoporotic fractures, such as progressive immobilization, long-term glucocorticoids (GCs) treatment or vitamin D deficiency. The duration of motor disability appears to be a major contributor to the reduction of bone strength. The long term immobilization causes a marked imbalance between bone formation and resorption with depressed bone formation and a marked disruption of mechanosensory network of tightly connected osteocytes due to increase of osteocyte apoptosis. Patients with higher level of disability have also higher risk of falls that combined with a bone loss increases the frequency of bone fractures. There are currently no recommendations how to best prevent and treat osteoporosis in patients with MS. However, devastating effect of immobilization on the skeleton in patients with MS underscores the importance of adequate mechanical stimuli for maintaining the bone structure and its mechanical competence. The physical as well as pharmacological interventions which can counteract the bone remodeling imbalance, particularly osteocyte apoptosis, will be promising for prevention and treatment of osteoporosis in patients with MS.


2017 ◽  
Author(s):  
Rachel L Duckham ◽  
Timo Rantalainen ◽  
Christine Rodda ◽  
Anna Timperio ◽  
Nicola Hawley ◽  
...  

2020 ◽  
Vol 54 (5) ◽  
pp. 15-22
Author(s):  
I.M. Larina ◽  
◽  
D.N. Kashirina ◽  
K.S. Kireev ◽  
A.I. Grigoriev ◽  
...  

We performed the first ever comparative analysis of modifications in the proteome, ionogram and some other blood plasma biochemical indices of 18 male cosmonauts (44 ± 6 years of age) before and after maiden or repeated long-term missions to the Russian segment of the International space station (ISS RS). Levels of proteins, substrates and ions as well as chemical components were measured using the LC-MS-based proteomics and routine biochemical techniques. A total of 256 to 281 indices were investigated with the methods of descriptive statistic, regression analysis, and access to bioinformatics resources. It was shown that blood indices recovery from the maiden and repeated missions reflects changes in the body systems and goes at a various speed. The results of measurements made prior to launch and on day 7 after landing are dependent on the number of missions. The bioinformatics techniques showed that after maiden missions both the mediator proteins of alkaline phosphatase (AP) and blood proteins with reliably changing concentrations are associated with the bio-processes including stress, metabolism and DNA reparation, apoptosis, catabolism and proteolysis. During early re-adaptation from repeated missions the AP level was affected by bone remodeling, phosphorylation, angiogenesis and coagulation cascade suggesting a distinct and urgent trigger of the processes of bone structure and mineralization.


Sign in / Sign up

Export Citation Format

Share Document