STEROID RELEASE IN VITRO BY TWO LUTEAL CELL TYPES IN THE CORPUS LUTEUM OF THE PREGNANT SOW

1977 ◽  
Vol 72 (3) ◽  
pp. 351-359 ◽  
Author(s):  
MEREDITH LEMON ◽  
M. LOIR

SUMMARY Corpora lutea from sows at 30, 60 and 90 days of gestation were dissociated enzymically, and the components of the resulting cell suspension were separated by sedimentation at unit gravity. Two luteal cell populations of 30–50 μm diameter and 15–20 μm diameter were obtained and superfused for up to 18 h with Dulbecco's modified Eagle medium, the cells being supported in a column in a matrix of Biogel. Fractions were collected every 30 min and assayed for progesterone and oestradiol-17β. At 30 and 60 days of gestation the large luteal cells produced progesterone at an initial rate of approximately 100 ng/h/105 cells, which decreased to half this rate at 90 days. The smaller cells also released progesterone into the medium at approximately 15–20 ng/h/105 cells at all stages of gestation. At 30 days of gestation, neither cell type released significant amounts of oestradiol-17β, but from 60 days onwards, significant and increasing quantities were measured in the superfusates from the larger cells. Both cell types were perfused with porcine LH at the three stages of gestation, and both showed an immediate response in terms of progesterone release which decreased in magnitude with increasing age of gestation. The response of the smaller cells was greater than that of the larger cells.

1994 ◽  
Vol 72 (11-12) ◽  
pp. 531-536 ◽  
Author(s):  
Nicholas Kenny ◽  
Rachel E. Williams ◽  
Lorraine B. Kelm

At the end of a nonconception estrous cycle, the sheep corpus luteum undergoes involution (luteolysis), a process thought to involve apoptotic deletion of cells. It is not yet clear which of the heterogeneous luteal cell types is involved or what mechanisms drive the apoptotic progression. We examined intact paraffin-embedded corpora lutea (in situ terminal dUTP nick end-labeling method) and found direct evidence for apoptotic deletion of cells during luteolysis, but not in healthy, nonregressing corpora lutea. We then sought to implement in vitro models to dissect apoptotic mechanisms in the constituent cells of the corpus luteum. Cells prepared using standard collagenase dispersion of corpus luteum were evaluated for evidence of apoptosis (DNA laddering) by direct agarose gel electrophoresis, a method that obviates the need for DNA extraction, so allowing examination of relatively few cells (≤ 0.5 × 106). When cells were prepared from nonregressing corpus luteum for in vitro manipulation, a population(s) of cells undergoing spontaneous apoptosis was detected. Apoptosis was inhibited by Zn2+ (5 mM), by the tyrosine phosphatase inhibitor sodium orthovanadate (100 μM), or by maintenance at 4 °C. It appears that simple collagenase digestion of intact corpus luteum removes a subset of constituent cells from their survival signal, leading to rapid initiation of endonuclease activity and apoptotic cell death. Identification of the required survival factors and their actions is being pursued to facilitate development of appropriate in vitro models for this endocrine system.Key words: corpus luteum, apoptosis.


1983 ◽  
Vol 19 (1) ◽  
pp. 811-815 ◽  
Author(s):  
Mori Takahide ◽  
Nihnobu Kenji ◽  
Takeuchi Satoru ◽  
Onho Yoshio ◽  
Tojo Shimpei

Author(s):  
Stacia Z. McIntosh ◽  
Kelsey E. Quinn ◽  
Ryan L. Ashley

Abstract Adequate corpus luteum (CL) function is paramount to successful pregnancy. Structural and functional CL integrity is controlled by diverse cell types that contribute and respond to the local cytokine milieu. The chemokine ligand 12 (CXCL12) and receptor, CXCR4, are modulators of inflammation and cell survival, but little is understood about CXCL12-CXCR4 axis and CL functional regulation. Corpora lutea from control nonpregnant ewes (n = 5; day 10 estrous cycle (D10C)) and pregnant ewes (n = 5/day) on days 20 (D20P) and 30 (D30P) post-breeding were analyzed for gene and protein expression of CXCL12, CXCR4, and select inflammatory cytokines. In separate cell culture studies, cytokine production was evaluated following CXCL12 treatment. Abundance of CXCL12 and CXCR4 increased (P < 0.05) in pregnant ewes compared to nonpregnant ewes, as determined by a combination of quantitative PCR, immunoblot, and immunofluorescence microscopy. CXCR4 was detected in steroidogenic and nonsteroidogenic cells in ovine CL, and select pro-inflammatory mediators were greater in CL from pregnant ewes. In vitro studies revealed greater abundance of tumor necrosis factor (TNF) following CXCL12 administration (P = 0.05), while P4 levels in cell media were unchanged. Fully functional CL of pregnant ewes is characterized by increased abundance of inflammatory cytokines which may function in a luteotropic manner. We report concurrent increases in CXCL12, CXCR4, and select inflammatory mediators in ovine CL as early pregnancy progresses. We propose CXCL12 stimulates production of select cytokines, rather than P4 in the CL to assist in CL establishment and survival.


1983 ◽  
pp. 811-815
Author(s):  
TAKAHIDE MORI ◽  
KENJI NIHNOBU ◽  
SATORU TAKEUCHI ◽  
YOSHIO ONHO ◽  
SHIMPEI TOJO

1979 ◽  
Vol 83 (3) ◽  
pp. 303-NP ◽  
Author(s):  
JOCELYNE URSELY ◽  
PIERRE LEYMARIE

Luteal cell suspensions obtained by enzymatic digestion of pregnant cow corpus luteum were found to be heterogenous and mainly made up of two types of cells of different sizes. The large cells (37 μm, average diameter) could be separated from the small ones (18 μm, average diameter) by sedimentation at unit gravity in a gradient of Ficoll–bovine serum albumin. A comparative in-vitro study of the synthesis of progesterone by the two types of cells indicated striking differences between them. The average content and the synthesis of progesterone in the absence and presence of a saturating dose of bovine LH after incubation for 2 h were 0·07, 0·12 and 6·9 pg/cell for the small cells and 0·65, 2 and 10 pg/cell for the large ones. Moreover, the sensitivity to low concentrations of LH was 100 to 1000 times higher for the small cells than for the large ones. oestradiol-17β at concentrations ranging from 5 × 10−10 to 5 × 10−4 mol/l exerted a dose–dependent inhibition on the stimulation of LH in both cell types. These results suggest a possible involvement of both cell types in the synthesis of progesterone in vivo with a greater contribution by the small cells to stimulation induced by LH. Moreover, it appears that small cell suspensions could be a useful model system for in-vitro studies of the control of the synthesis of progesterone in cow corpus luteum.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Thu T. Duong ◽  
James Lim ◽  
Vidyullatha Vasireddy ◽  
Tyler Papp ◽  
Hung Nguyen ◽  
...  

Recombinant adeno-associated virus (rAAV), produced from a nonpathogenic parvovirus, has become an increasing popular vector for gene therapy applications in human clinical trials. However, transduction and transgene expression of rAAVs can differ acrossin vitroand ex vivo cellular transduction strategies. This study compared 11 rAAV serotypes, carrying one reporter transgene cassette containing a cytomegalovirus immediate-early enhancer (eCMV) and chicken beta actin (CBA) promoter driving the expression of an enhanced green-fluorescent protein (eGFP) gene, which was transduced into four different cell types: human iPSC, iPSC-derived RPE, iPSC-derived cortical, and dissociated embryonic day 18 rat cortical neurons. Each cell type was exposed to three multiplicity of infections (MOI: 1E4, 1E5, and 1E6 vg/cell). After 24, 48, 72, and 96 h posttransduction, GFP-expressing cells were examined and compared across dosage, time, and cell type. Retinal pigmented epithelium showed highest AAV-eGFP expression and iPSC cortical the lowest. At an MOI of 1E6 vg/cell, all serotypes show measurable levels of AAV-eGFP expression; moreover, AAV7m8 and AAV6 perform best across MOI and cell type. We conclude that serotype tropism is not only capsid dependent but also cell type plays a significant role in transgene expression dynamics.


1991 ◽  
Vol 19 (01) ◽  
pp. 61-64 ◽  
Author(s):  
Satoshi Usuki

The effect of herbal components of Tokishakuyakusan on somatomedin C/insulin-like growth factor I (IGF-1) level in medium from rat corpora lutea incubated in vitro was examined. Hoelen + peony root + Japanese angelica root, hoelen + peony root, hoelen + Japanese angelica root or peony root + Japanese angelica root decreased the IGF-1 level. The data suggest that constituent herbal components of Tokishakuyakusan regulate the IGF-1 level by rat corpora lutea.


1990 ◽  
Vol 259 (6) ◽  
pp. L415-L425 ◽  
Author(s):  
P. E. Roberts ◽  
D. M. Phillips ◽  
J. P. Mather

A novel epithelial cell from normal neonatal rat lung has been isolated, established, and maintained for multiple passages in the absence of serum, without undergoing crisis or senescence. By careful manipulation of the nutrition/hormonal microenvironment, we have been able to select, from a heterogeneous population, a single epithelial cell type that can maintain highly differentiated features in vitro. This cell type has characteristics of bronchiolar epithelial cells. A clonal line, RL-65, has been selected and observed for greater than 2 yr in continuous culture. It has been characterized by ultrastructural, morphological, and biochemical criteria. The basal medium for this cell line is Ham's F12/Dulbecco's modified Eagle's (DME) medium plus insulin (1 micrograms/ml), human transferrin (10 micrograms/ml), ethanolamine (10(-4) M), phosphoethanolamine (10(-4) M), selenium (2.5 x 10(-8) M), hydrocortisone (2.5 x 10(-7) M), and forskolin (5 microM). The addition of 150 micrograms/ml of bovine pituitary extract to the defined basal medium stimulates a greater than 10-fold increase in cell number and a 50- to 100-fold increase in thymidine incorporation. The addition of retinoic acid results in further enhancement of cell growth and complete inhibition of keratinization. We have demonstrated a strategy that may be applicable to isolating other cell types from the lung and maintaining their differentiated characteristics for long-term culture in vitro. Such a culture system promises to be a useful model in which to study cellular events associated with differentiation and proliferation in the lung and to better understand the molecular mechanisms involved in these events.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


Sign in / Sign up

Export Citation Format

Share Document