scholarly journals Horizontal-cell gap junction in the goldfish retina: area and density of particles as revealed by complementary freeze replicas.

1991 ◽  
Vol 54 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Hiroshi WASHIOKA ◽  
Hiroshi WATANABE ◽  
Koroku NEGISHI ◽  
Akira TONOSAKI
1987 ◽  
Vol 265 (3) ◽  
pp. 428-436 ◽  
Author(s):  
William H. Baldridge ◽  
Alexander K. Ball ◽  
Rodman G. Miller

1997 ◽  
Vol 14 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Keith M. Studholme ◽  
Stephen Yazulla

AbstractThere are four types of horizontal cell in the goldfish retina, three cone- and one rod-type. The neurotransmitter of only one type, the H1 (cone) horizontal cell, has been identified as GABA. 3H-adenosine uptake was examined as a possible marker for the other classes of horizontal cell. Isolated goldfish retinae were incubated in 3H-adenosine (10–40 μCi) in HEPES-buffered saline for 30 min, then fixed, embedded in plastic, and processed for light-microscopic autoradiography (ARG). For double-label immuno/ARG studies, l-μm-thick sections were processed for GABA postembed immunocytochemistry, then for ARG. 3H-adenosine uptake was localized to cone photoreceptors, presumed precursor cells in the proximal outer nuclear layer, and to a single, continuous row of horizontal cell bodies in the inner nuclear layer. No uptake was localized to the region of horizontal cell axon terminals. 3H-adenosine uptake did not colocalize with GABA-IR in H1 horizontal cells, but it did colocalize with adenosine deaminase immunoreactivity. It is concluded that 3H-adenosine uptake selectively labels rod horizontal cells in the goldfish retina based on position and staining pattern, which are similar to rod horizontal cells stained by Golgi or HRP injection methods. The use of 3H-adenosine uptake may provide a useful tool to study other properties of rod horizontal cells (i.e. development) as well as provide clues as to the transmitter used by these interneurons.


Science ◽  
1979 ◽  
Vol 204 (4400) ◽  
pp. 1436-1438 ◽  
Author(s):  
J. Raynauld ◽  
Laviolette ◽  
H. Wagner

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0218818
Author(s):  
Christophe Ribelayga ◽  
Stuart C. Mangel

1998 ◽  
Vol 15 (5) ◽  
pp. 799-808 ◽  
Author(s):  
D.A. KRAAIJ ◽  
M. KAMERMANS ◽  
H. SPEKREIJSE

The spectral sensitivity of cones in isolated goldfish retina was determined with whole-cell recording techniques. Three spectral classes of cones were found with maximal sensitivities around 620 nm, 540 nm, and 460 nm. UV-cones were not found because our stimulator did not allow effective stimulation in the UV range. The spectral sensitivity of the cones closely matched the cone photopigment absorption spectra at the long wavelength side of the spectrum, but deviated significantly at shorter wavelengths. Surround stimulation induced an inward current in cones due to feedback from horizontal cells. The spectral sensitivity of this feedback signal was determined in all three cone classes and found to be broader than the spectral sensitivity of the cones recorded from, and to be spectrally nonopponent. These data are consistent with a connectivity scheme between cones and horizontal cells in which the three horizontal cell systems feed back to all cone systems and in which all horizontal cell systems receive input from more than one cone system.


1994 ◽  
Vol 72 (5) ◽  
pp. 2257-2268 ◽  
Author(s):  
D. G. McMahon ◽  
D. R. Brown

1. Transmission at electrical synapses is modulated by a variety of physiological signals, and this modulation is a potentially general mechanism for regulating signal integration in neural circuits and networks. In the outer plexiform layer of the retina, modulation of horizontal-cell electrical coupling by dopamine alters the extent of spatial integration in the horizontal-cell network. By analyzing the activity of individual gap-junction channels in low-conductance electrical synapses of zebrafish retinal horizontal cells, we have defined the properties of these synaptic ion channels and characterized the functional changes in them during modulation of horizontal-cell electrical synapses. 2. Zebrafish horizontal-cell gap-junction channels have a unitary conductance of 50–60 pS and exhibit open times of several tens of milliseconds. The kinetic process of channel closure is best described by the sum of two rate constants. 3. Dopamine, and its agonist, (+/-)-6,7-dihydroxy-2-amino-tetralin (ADTN), modulates electrical synaptic transmission between horizontal cells predominantly by affecting channel-gating kinetics. These agents reduced the open probability of gap-junction channels two- to threefold by reducing both the duration and frequency of channel openings. Both time constants for channel open duration were reduced, whereas the duration of shut periods was increased. Similar changes in open-time kinetics were observed in power spectra of higher conductance gap junctions. 4. These results provide a description of rapid electrical synaptic modulation at the single channel level. The description should be useful in understanding the mechanisms of plasticity at these synapses throughout the vertebrate central nervous system.


2007 ◽  
Vol 24 (4) ◽  
pp. 609-618 ◽  
Author(s):  
FENG PAN ◽  
STEPHEN L. MILLS ◽  
STEPHEN C. MASSEY

Many cell types in the retina are coupled via gap junctions and so there is a pressing need for a potent and reversible gap junction antagonist. We screened a series of potential gap junction antagonists by evaluating their effects on dye coupling in the network of A-type horizontal cells. We evaluated the following compounds: meclofenamic acid (MFA), mefloquine, 2-aminoethyldiphenyl borate (2-APB), 18-α-glycyrrhetinic acid, 18-β-glycyrrhetinic acid (18-β-GA), retinoic acid, flufenamic acid, niflumic acid, and carbenoxolone. The efficacy of each drug was determined by measuring the diffusion coefficient for Neurobiotin (Mills & Massey, 1998). MFA, 18-β-GA, 2-APB and mefloquine were the most effective antagonists, completely eliminating A-type horizontal cell coupling at a concentration of 200 μM. Niflumic acid, flufenamic acid, and carbenoxolone were less potent. Additionally, carbenoxolone was difficult to wash out and also may be harmful, as the retina became opaque and swollen. MFA, 18-β-GA, 2-APB and mefloquine also blocked coupling in B-type horizontal cells and AII amacrine cells. Because these cell types express different connexins, this suggests that the antagonists were relatively non-selective across several different types of gap junction. It should be emphasized that MFA was water-soluble and its effects on dye coupling were easily reversible. In contrast, the other gap junction antagonists, except carbenoxolone, required DMSO to make stock solutions and were difficult to wash out of the preparation at the doses required to block coupling in A-type HCs. The combination of potency, water solubility and reversibility suggest that MFA may be a useful compound to manipulate gap junction coupling.


1996 ◽  
Vol 36 (24) ◽  
pp. 4105-4119 ◽  
Author(s):  
M. Kamermans ◽  
J. Hark ◽  
J.B.A. Habraken ◽  
H. Spekreijse

Sign in / Sign up

Export Citation Format

Share Document