Deterioration of the Anti-Frost Performance of Concrete with Construction Waste Composite Powder Materials

2020 ◽  
Vol 9 (2) ◽  
pp. 1-14
Author(s):  
Cuizhen Xue ◽  
Junping Ren ◽  
Xiangchen Zhu ◽  
Aiqin Shen
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Cuizhen Xue ◽  
Aiqin Shen ◽  
Yinchuan Guo ◽  
Tianqin He

The construction and demolition wastes have increased rapidly due to the prosperity of infrastructure construction. For the sake of effectively reusing construction wastes, this paper studied the potential use of construction waste composite powder material (CWCPM) as cementitious materials in small-scale prefabricated concretes. Three types of such concretes, namely, C20, C25, and C30, were selected to investigate the influences of CWCPM on their working performances, mechanical properties, and antipermeability and antifrost performances. Also the effects of CWCPM on the morphology, hydration products, and pore structure characteristics of the cement-based materials were analyzed. The results are encouraging. Although CWCPM slightly decreases the mechanical properties of the C20 concrete and the 7 d compressive strengths of the C25 and C30 concretes, the 28 d compressive strength and the 90 d flexural strength of the C25 and C30 concretes are improved when CWCPM has a dosage less than 30%; CWCPM improves the antipermeability and antifrost performances of the concretes due to its filling and pozzolanic effects; the best improvement is obtained at CWCPM dosage of 30%; CWCPM optimizes cement hydration products, refines concrete pore structure, and gives rise to reasonable pore size distribution, therefore significantly improving the durability of the concretes.


Author(s):  
T. I. Bobkova ◽  
B. V. Farmakovsky ◽  
N. A. Sokolova

The work deals with topical issues such as development of composite nanostructured powder materials. The results of creating powders based on the system “aluminum–nitride of silicon” are presented. Complex investigations of the composition, structure and properties of powder materials, as well as coatings formed on their basis by supersonic cold gas dynamic spraying, were carried out. It has been found that the high-energy treatment of a powder mixture of aluminum with nanofibers of silicon nitride provides the formation of a composite powder in which a new phase of the Si(1-х)AlхO(1-х)Nх type is formed, which additionally increases the hardness in the coatings to be sprayed.


Author(s):  
T. I. Bobkova ◽  
R. Yu. Bystrov ◽  
A. A. Grigoriev ◽  
E. A. Samodelkin ◽  
B. V. Farmakovsky

This paper presents results of a study of complex processes for producing composite powder materials from tungsten carbide and metallic chromium. Technological methods for the formation of functionally gradient coatings with high microhardness up to 426 HV through microplasma spraying technology are disclosed.


Author(s):  
I. N. Kravchenko ◽  
Yu. A. Kuznetsov ◽  
A. L. Galinovskii ◽  
S. A. Velichko ◽  
P. A. Ionov ◽  
...  

2007 ◽  
Vol 178 (27-28) ◽  
pp. 1552-1562 ◽  
Author(s):  
A HAGIWARA ◽  
N HOBARA ◽  
K TAKIZAWA ◽  
K SATO ◽  
H ABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document