Claudin-10a Deficiency Shifts Proximal Tubular Cl- Permeability to Cation Selectivity via Claudin-2 Redistribution

2022 ◽  
pp. ASN.2021030286
Author(s):  
Tilman Breiderhoff ◽  
Nina Himmerkus ◽  
Luca Meoli ◽  
Anja Fromm ◽  
Sebastian Sewerin ◽  
...  

Background The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiological role of claudin-10a in the kidney has been unclear. Methods To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice; confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining; and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. Results Mice deficient in claudin-10a were fertile and without overt phenotypes. Upon knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a consequence, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison of other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, as well as unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. Conclusions Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyperreabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.

1975 ◽  
Vol 229 (3) ◽  
pp. 813-819 ◽  
Author(s):  
A Grandchamp ◽  
Scherrer ◽  
D Scholer ◽  
J Bornand

The effect of small changes in intraluminal hydrostatic pressure (P) on the tubular radius (r) and the net fluid reabsorption per unit of surface area of the tubular wall (Js) has been studied in the proximal tubule of the rat kidney. The split-drop method was used to simultaneously determine Js and r. Two standardized split-drop techniques A and B allow selective change in P. P was 31.6 +/- 1.3 mmHg in technique A and 15.5 +/- 1.5 in technique B. The pressure difference significantly affected the tubular radius; r was 21.9 +/- 0.4 and 18.6 +/- 0.5 mum in the split drop A and B, respectively. In contrast, net transepithelial fluid reabsorption Js was unchanged. Js amounted to 2.72 +/- 0.20, and 2.78 +/- 0.33 10(-5) cm3 cm-2 s-1 in split drop A and B. The absence of variations in Js could result from two opposite effects of pressure. P might enhance Js by increased ultrafiltration. However, the rise in r might decrease the density of the intraepithelial transport paths per unit area of tubular wall and therefore might decrease Js.


1981 ◽  
Vol 241 (3) ◽  
pp. F238-F243
Author(s):  
D. A. Hartupee ◽  
A. H. Gillies ◽  
F. G. Knox

Previous studies concerning the measurement of single nephron filtration rate have shown that collections of proximal tubular fluid, in which an oil drop is held in a constant position, do not affect intratubular pressure in the early proximal tubule in the hydropenic rat. Since intratubular pressures are higher in the dog than the rat, we investigated the effect of position-controlled collections on proximal pressure and single nephron filtration rate (SNGFR) in the dog. During position-controlled collections, early proximal pressure fell 5.8 +/- 0.9 mmHg and SNGFR was 76.3 +/- 5.3 nl/min. During proximal re-collections, in which proximal pressure was maintained near the free-flow value using a long immobile oil block, SNGFR was significantly less, 44.4 +/- 5.5 nl/min. For each micropunctured kidney, SNGFR was also estimated by dividing GFR by the number of glomeruli (mean, 5.4 +/- 0.5 X 10(5)). Estimated SNGFR (50.9 +/- 6.3 nl/min) was not significantly different from pressure-controlled SNGFR but was significantly less than position-controlled SNGFR. Accordingly, in the dog, early proximal pressure decreases during position-controlled collection of proximal tubular fluid, resulting in an overestimation of SNGFR. This artifact can be avoided by controlling the intratubular pressure during collection of tubular fluid.


1994 ◽  
Vol 266 (4) ◽  
pp. F658-F666 ◽  
Author(s):  
J. Guntupalli ◽  
T. D. DuBose

Endothelin (ET), a powerful vasoconstrictive peptide, is distributed ubiquitously in various organs, including the vascular endothelium and tubules of the kidney. Although localized more abundantly to the glomerulus and inner medullary collecting duct, ET receptors have been identified in the proximal tubule. The possible effects of ET on proximal tubule transport and the potential role of second messengers in this process have not been described fully. To define the role of ET in proximal tubule transport, renal cortical slices were incubated for 3 min in the presence of various concentrations of ET. Incubation with low concentrations of ET-1 (1 x 10(-9) to 1 x 10(-11) M) within the physiological range stimulated both Na(+)-Pi cotransport and Na+/H+ exchange. Pretreatment with staurosporine (0.6 microM) for 25 min abolished completely the ET-induced effects on Na(+)-Pi cotransport and Na+/H+ exchange. Similarly, preincubation with phorbol ester 12-O-tetradecanoylphorbol-13-acetate (200 nM) also abolished the effects of ET on these transporters. Incubation with ET decreased significantly intracellular adenosine 3',5'-cyclic monophosphate (cAMP). Intravenous administration of pertussis toxin for 2 days prevented the ET-induced decrease in cAMP and abolished the stimulatory effects of ET on Na(+)-Pi cotransport and Na+/H+ exchange. These findings provide indirect evidence that ET participates in the regulation of proximal tubular Pi and bicarbonate homeostasis. These effects of ET are mediated by activation of protein kinase C and cAMP-dependent protein kinase A.


2006 ◽  
Vol 290 (6) ◽  
pp. F1367-F1375 ◽  
Author(s):  
H. Thomas Lee ◽  
Michael Jan ◽  
Soo Chan Bae ◽  
Jin Deok Joo ◽  
Farida R. Goubaeva ◽  
...  

The role of renal A1 adenosine receptors (A1AR) in the pathogenesis of radiocontrast nephropathy is controversial. We aimed to further elucidate the role of A1AR in the pathogenesis of radiocontrast nephropathy and determine whether renal proximal tubule A1AR contribute to the radiocontrast nephropathy. To induce radiocontrast nephropathy, A1AR wild-type (WT) or knockout (KO) mice were injected with a nonionic radiocontrast (iohexol, 1.5–3 g iodine/kg). Some A1WT mice were pretreated with 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; a selective A1AR antagonist) before iohexol injection. A1AR contribute to the pathogenesis of radiocontrast nephropathy in vivo as the A1WT mice developed significantly worse acute renal failure, more renal cortex vacuolization, and had lower survival 24 h after iohexol treatment compared with the A1KO mice. DPCPX pretreatment also protected the A1WT mice against radiocontrast-induced acute renal failure. No differences in renal cortical apoptosis or inflammation were observed between A1WT and A1KO mice. To determine whether the proximal tubular A1AR mediate the direct renal cytotoxicity of radiocontrast, we treated proximal tubules in culture with iohexol with or without 2-chloro- N6-cyclopentyladenosine (a selective A1AR agonist) or DPCPX pretreatment. We also subjected cultured proximal tubule cells overexpressing A1AR or lacking A1AR to radiocontrast injury. Iohexol caused a direct dose-dependent reduction in proximal tubule cell viability as well as proliferation. Neither the A1AR agonist nor the antagonist treatment affected proximal tubule viability or proliferation. Moreover, overexpression or lack of A1AR failed to impact the iohexol toxicity on proximal tubule cells. Therefore, we conclude that radiocontrast causes acute renal failure via mechanisms dependent on A1AR; however, renal proximal tubule A1AR do not contribute to the direct tubular toxicity of radiocontrast.


2018 ◽  
Vol 20 (2) ◽  
pp. 150-169
Author(s):  
Ja.F. Zverev ◽  
◽  
V.M. Bryukhanov ◽  
A.Ya. Rykunova ◽  
◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Jamshed Iqbal ◽  
Ayesha Basharat ◽  
Sehrish Bano ◽  
Syed Mobasher Ali Abid ◽  
Julie Pelletier ◽  
...  

Aims: The present study was conducted to examine the inhibitory effects of synthesized sulfonylhydrazones on the expression of CD73 (ecto-5′-NT). Background: CD73 (ecto-5′-NT) represents the most significant class of ecto-nucleotidases which are mainly responsible for dephosphorylation of adenosine monophosphate to adenosine. Inhibition of CD73 played an important role in the treatment of cancer, autoimmune disorders, precancerous syndromes, and some other diseases associated with CD73 activity. Objective: Keeping in view the significance of CD73 inhibitor in the treatment of cervical cancer, a series of sulfonylhydrazones (3a-3i) derivatives synthesized from 3-formylchromones were evaluated. Methods: All sulfonylhydrazones (3a-3i) were evaluated for their inhibitory activity towards CD73 (ecto-5′-NT) by the malachite green assay and their cytotoxic effect was investigated on HeLa cell line using MTT assay. Secondly, most potent compound was selected for cell apoptosis, immunofluorescence staining and cell cycle analysis. After that, CD73 mRNA and protein expression were analyzed by real-time PCR and Western blot. Results: Among all compounds, 3h, 3e, 3b, and 3c were found the most active against rat-ecto-5′-NT (CD73) enzyme with IC50 (µM) values of 0.70 ± 0.06 µM, 0.87 ± 0.05 µM, 0.39 ± 0.02 µM and 0.33 ± 0.03 µM, respectively. These derivatives were further evaluated for their cytotoxic potential against cancer cell line (HeLa). Compound 3h and 3c showed the cytotoxicity at IC50 value of 30.20 ± 3.11 µM and 86.02 ± 7.11 µM, respectively. Furthermore, compound 3h was selected for cell apoptosis, immunofluorescence staining and cell cycle analysis which showed promising apoptotic effect in HeLa cells. Additionally, compound 3h was further investigated for its effect on expression of CD73 using qRT-PCR and western blot. Conclusion: Among all synthesized compounds (3a-3i), Compound 3h (E)-N'-((6-ethyl-4-oxo-4H-chromen-3-yl) methylene)-4-methylbenzenesulfonohydrazide was identified as most potent compound. Additional expression studies conducted on HeLa cell line proved that this compound successfully decreased the expression level of CD73 and thus inhibiting the growth and proliferation of cancer cells.


2001 ◽  
Vol 59 (s78) ◽  
pp. 258-261 ◽  
Author(s):  
Mihaela C. Ignatescu ◽  
Manuela Fodiger ◽  
Josef Kletzmayr ◽  
Christian Bieglmayer ◽  
Walter H. Horl ◽  
...  

Reproduction ◽  
2013 ◽  
Vol 146 (2) ◽  
pp. 119-133 ◽  
Author(s):  
Barbara Ambruosi ◽  
Gianluca Accogli ◽  
Cécile Douet ◽  
Sylvie Canepa ◽  
Géraldine Pascal ◽  
...  

Oviductal environment affects preparation of gametes for fertilization, fertilization itself, and subsequent embryonic development. The aim of this study was to evaluate the effect of oviductal fluid and the possible involvement of deleted in malignant brain tumor 1 (DMBT1) on IVF in porcine and equine species that represent divergent IVF models. We first performed IVF after pre-incubation of oocytes with or without oviductal fluid supplemented or not with antibodies directed against DMBT1. We showed that oviductal fluid induces an increase in the monospermic fertilization rate and that this effect is canceled by the addition of antibodies, in both porcine and equine species. Moreover, pre-incubation of oocytes with recombinant DMBT1 induces an increase in the monospermic fertilization rate in the pig, confirming an involvement of DMBT1 in the fertilization process. The presence of DMBT1 in the oviduct at different stages of the estrus cycle was shown by western blot and confirmed by immunohistochemical analysis of ampulla and isthmus regions. The presence of DMBT1 in cumulus–oocyte complexes was shown by western blot analysis, and the localization of DMBT1 in the zona pellucida and cytoplasm of equine and porcine oocytes was observed using immunofluorescence analysis and confocal microscopy. Moreover, we showed an interaction between DMBT1 and porcine spermatozoa using surface plasmon resonance studies. Finally, a bioinformatic and phylogenetic analysis allowed us to identify the DMBT1 protein as well as a DMBT1-like protein in several mammals. Our results strongly suggest an important role of DMBT1 in the process of fertilization.


2021 ◽  
Vol 11 (3) ◽  
pp. 219
Author(s):  
Ya-Ling Yang ◽  
Yen-Hsiang Chang ◽  
Chia-Jung Li ◽  
Ying-Hsien Huang ◽  
Ming-Chao Tsai ◽  
...  

Hepatocellular carcinoma (HCC) remains one of the most lethal human cancer globally. For advanced HCC, curable plan for advanced HCC is yet to be established, and the prognosis remains poor. The detail mechanisms underlying the progression of HCC tumorigenicity and the corruption of tumor microenvironment (TME) is complex and inconclusive. A growing body of studies demonstrate microRNAs (miRs) are important regulators in the tumorigenicity and TME development. Notably, mounting evidences indicate miR-29a play a crucial role in exerting hepatoprotective effect on various types of stress and involved in the progression of HCC, which elucidates their potential theragnostic implications. In this review, we reviewed the advanced insights into the detail mechanisms by which miR-29a dictates carcinogenesis, epigenetic program, and metabolic adaptation, and implicated in the sponging activity of competitive endogenous RNAs (ceRNA) and the TME components in the scenario of HCC. Furthermore, we highlighted its clinical significance in diagnosis and prognosis, as well as the emerging therapeutics centered on the activation of miR-29a.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoqing Fan ◽  
Haoran Yang ◽  
Chenggang Zhao ◽  
Lizhu Hu ◽  
Delong Wang ◽  
...  

Abstract Background A large number of preclinical studies have shown that local anesthetics have a direct inhibitory effect on tumor biological activities, including cell survival, proliferation, migration, and invasion. There are few studies on the role of local anesthetics in cancer stem cells. This study aimed to determine the possible role of local anesthetics in glioblastoma stem cell (GSC) self-renewal and the underlying molecular mechanisms. Methods The effects of local anesthetics in GSCs were investigated through in vitro and in vivo assays (i.e., Cell Counting Kit 8, spheroidal formation assay, double immunofluorescence, western blot, and xenograft model). The acyl-biotin exchange method (ABE) assay was identified proteins that are S-acylated by zinc finger Asp-His-His-Cys-type palmitoyltransferase 15 (ZDHHC15). Western blot, co-immunoprecipitation, and liquid chromatograph mass spectrometer-mass spectrometry assays were used to explore the mechanisms of ZDHHC15 in effects of local anesthetics in GSCs. Results In this study, we identified a novel mechanism through which local anesthetics can damage the malignant phenotype of glioma. We found that local anesthetics prilocaine, lidocaine, procaine, and ropivacaine can impair the survival and self-renewal of GSCs, especially the classic glioblastoma subtype. These findings suggest that local anesthetics may weaken ZDHHC15 transcripts and decrease GP130 palmitoylation levels and membrane localization, thus inhibiting the activation of IL-6/STAT3 signaling. Conclusions In conclusion, our work emphasizes that ZDHHC15 is a candidate therapeutic target, and local anesthetics are potential therapeutic options for glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document