scholarly journals Selective Cyclooxygenase-2 Inhibition Impairs Glomerular Capillary Healing in Experimental Glomerulonephritis

2002 ◽  
Vol 13 (5) ◽  
pp. 1261-1270 ◽  
Author(s):  
Masashi Kitahara ◽  
Frank Eitner ◽  
Tammo Ostendorf ◽  
Uta Kunter ◽  
Ulf Janssen ◽  
...  

ABSTRACT. Selective cyclooxygenase-2 (COX-2) inhibitors have anti-inflammatory activity and reduce proteinuria in experimental membranous glomerulonephritis. Antiangiogenic properties of COX-2 inhibitors were recently reported. Whether these properties are relevant to the glomerular healing process in inflammatory glomerular diseases was investigated. For evaluation of the effects of selective COX-2 inhibitors on the glomerular healing process in a rat model of mesangioproliferative glomerulonephritis (induced by anti-Thy 1.1 antibody), a selective COX-2 inhibitor (rofecoxib or celecoxib) or vehicle was administered daily from day 1 after disease induction until euthanasia on day 6. Additional nephritic rats were treated with rofecoxib or vehicle from day 1 to day 10 and were monitored until day 28. Selective COX-2 inhibition led to significant increases in mesangiolysis (up to +71%) on days 2 and 6 and in albuminuria (up to 3.1-fold) on day 6. This augmentation of glomerular capillary damage was associated with rarefaction of glomerular endothelial cells, whereas the proliferation and activation of mesangial cells were not affected. No significant effects on the glomerular influx of polymorphonuclear neutrophils or the infiltration and proliferation of monocytes/macrophages at day 2 were noted. These effects were independent of systemic hemodynamic features, because rofecoxib did not affect systolic BP on day 2 or 5. Nephritic rats treated with rofecoxib for 10 d demonstrated persistent glomerular injury at day 28, as indicated by increased albuminuria (10-fold) and mesangial type IV collagen deposition (+24%). In normal rats, 5-d administration of rofecoxib failed to induce albuminuria or morphologic renal damage. In conclusion, selective COX-2 inhibitors impair glomerular capillary repair after mesangiolysis in rats with anti-Thy 1.1 glomerulonephritis. These data suggest that selective COX-2 inhibitors should be used with caution among patients with inflammatory endocapillary glomerular disorders.

1995 ◽  
Vol 73 (11) ◽  
pp. 1561-1567 ◽  
Author(s):  
L. Charette ◽  
C. Misquitta ◽  
J. Guay ◽  
D. Riendeau ◽  
T. R. Jones

Indomethacin and related nonsteroidal anti-inflammatory drugs relax prostanoid-dependent intrinsic tone of isolated guinea pig trachea by inhibiting cyclooxygenase (COX). Recently, a second isoform of COX (COX-2) was discovered, which differed from COX-1 with respect to protein structure, transcriptional regulation, and susceptibility to inhibition by pharmacological agents. It is now known that indomethacin nonselectively inhibits COX-1 and COX-2, whereas NS-398 is a selective inhibitor of COX-2. In the present study we compared the activity of a selective (NS-398) and nonselective (indomethacin) COX-2 inhibitor on intrinsic tone of isolated guinea pig trachea. NS-398 ≥ indomethacin produced a reversal of intrinsic tone with a similar concentration-dependent (10 nM to 1 μM) time course (Tmax approximately 20–45 min), potency (EC50 1.7 and 5.6 nM, respectively), and maximal response. Contractions to cholinergic nerve stimulation (45 V, 0.5 ms, 0.1–32 Hz) and histamine were similarly modulated in tissues relaxed with the selective or nonselective COX-2 inhibitors. Immunoblot analyses showed that COX-2 protein synthesis was induced in both the cartilage and smooth muscle portions of the trachea during changes in intrinsic tone. These findings are consistent with pharmacological results and provide the first demonstration that prostanoid tone in isolated guinea pig trachea is dependent on COX-2 activity. The results also suggest that the activity of indomethacin in this preparation is likely related to COX-2 inhibition.Key words: cyclooxygenase 2, relaxation, guinea pig trachea, cyclooxygenase 1.


2019 ◽  
Vol 316 (5) ◽  
pp. F906-F913 ◽  
Author(s):  
Wei Gong ◽  
Jiayu Song ◽  
Xi Chen ◽  
Shuzhen Li ◽  
Jing Yu ◽  
...  

Glomerular diseases are the leading cause of chronic kidney disease, and mesangial cells (MCs) have been demonstrated to be involved in the pathogenesis. Puromycin aminonucleoside (PAN) is a nephrotoxic drug that induces glomerular injury with elusive mechanisms. The present study was undertaken to investigate the role of PAN in MC apoptosis, as well as the underlying mechanism. Here we found that PAN induced MC apoptosis accompanied by declined cell viability and enhanced inflammatory response. The apoptosis was further evidenced by increments of apoptosis regulator BAX (BAX) and caspase-3 expression. In line with the apoptotic response in MCs following PAN treatment, we also found a remarkable induction of estrogen-related receptor-α (ERRα), an orphan nuclear receptor, at both mRNA and protein levels. Interestingly, ERRα silencing by an siRNA approach resulted in an attenuation of the apoptosis and inflammatory response caused by PAN. More importantly, overexpression of ERRα in MCs significantly triggered MC apoptosis in line with increased BAX and caspase-3 expression. In PAN-treated MCs, ERRα overexpression further aggravated PAN-induced apoptosis. In agreement with the in vitro study, we also observed increased ERRα expression in line with enhanced apoptotic response in renal cortex from PAN-treated rats. These data suggest a detrimental effect of ERRα on PAN-induced MC apoptosis and inflammatory response, which could help us to better understand the pathogenic mechanism of MC injury in PAN nephropathy.


Sign in / Sign up

Export Citation Format

Share Document