scholarly journals Changes in species diversity and above-ground biomass of shrubland over long-term natural restoration process in the Taihang Mountain in North China

2011 ◽  
Vol 57 (No. 11) ◽  
pp. 505-512 ◽  
Author(s):  
X. Liu ◽  
W. Zhang ◽  
Z. Liu ◽  
F. Qu ◽  
X. Tang

In order to restore the impaired forest ecosystem in China, great efforts including the banning of the animal grazing and cutting woods for fuel, and implementation of the ‘Grain for Green’ program have been made by the central and local government of China. The objective of this research was to investigate the changes in above-ground biomass and species diversity after 22 years of vegetation recovery efforts in the lower Taihang Mountain of China. The results indicated that over the natural restoration process shrubs became the dominant species in 2008, while herbs were the dominant species back in 1986. Community coverage, height and above-ground biomass showed significant increases in 2008 compared to 1986. Shrubs showed significant increases in coverage, height, and above-ground biomass, whereas herbs significantly increased in height, but decreased in above-ground biomass. Over the 22-year natural restoration process, the species richness index and the Shannon-Wiener’s index had been significantly decreased, whereas the Simpson’s predominance index and the Pielou’s evenness index had been significantly increased. Long-term vegetation recovery efforts improved the impaired forest ecosystem in lower Taihang Mountain to some extent: significant increases in both community coverage and above-ground biomass. The significant increase in community coverage can reduce the soil loss by wind and water erosion, and increase in the above-ground biomass will improve the soil chemical properties and physical structure. A comprehensive assessment of the success of vegetation recovery should include the evaluation of the changes in ecological process such as soil biological activities in the future research.

2012 ◽  
Vol 49 ◽  
pp. 193-200 ◽  
Author(s):  
Xiuping Liu ◽  
Wanjun Zhang ◽  
Fan Yang ◽  
Xia Zhou ◽  
Zhijun Liu ◽  
...  

1970 ◽  
Vol 17 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Anita Pokharel ◽  
Madhu Chhetri ◽  
Chiranjibi P Upadhyaya

Limited information is available on the species composition, above ground biomass and its relations to grazing in a trans-Himalayan rangeland. Its assessment is essential for long term conservation and management. In the present study, we compared species composition, phenology, diversity index and biomass between controlled (without grazing) and open (free grazing) plots to assess the effects of grazing in the selected experimental sites of Upper Mustang during July and November 2005. Species encountered were classified as high, medium, low and non palatable and in three life form categories-grasses, shrubs and forbs. The experimental sites are dominated by forbs (80%) followed by grasses (15%) and shrubs (5%). Disturbance caused by grazing affects the phenological characteristics of the plant community. Result also reveals that species diversity, maximum possible diversity, evenness and species richness was higher in the grazed plots during July and November. A comparison of the aboveground biomass in July showed that mean percentage biomass of high, medium and low palatable species is higher in ungrazed plots. In November, the percentage biomass of only medium palatable species was higher in ungrazed plots and rest of the category is higher in grazed plots. Significant difference in July, a peak growing seasons for most of the plant species in the region reveals that the pasture has impact of livestock grazing. Keywords: Biomass, diversity, grazing effect, rangeland, species Banko Janakari: A journal of forestry information for Nepal Vol.17(1) 2007 pp.25-31


2015 ◽  
Vol 34 (2) ◽  
pp. 137-146
Author(s):  
Saulius Marcinkonis ◽  
Birutė Karpavičienė ◽  
Michael A. Fullen

AbstractThe aim of the present study is to evaluate the long-term effects of long-term piggery effluent application on semi-natural grassland ecotop-phytotop changes (above- and below-ground phytomass production, and carbon and nitrogen allocation in grassland communities) in relation to changes (or variability) in topsoil properties. Analysis of phytomass distribution in piggery effluent irrigated grassland communities showed that dry biomass yield varied from 1.7−5.3 t ha-1. Variability in soil and plant cover created a unique and highly unpredictable site specific system, where long-term anthropogenic influences established successor communities with specific characteristics of above- and below-ground biomass distribution. These characteristics depend more on grassland communities than on soil chemical properties. Families of grasses (Poaceae) dominated the surveyed communities and accumulated most carbon and least nitrogen, while legumes accumulated most nitrogen and lignin and least carbon. Carbon concentrations in above-ground biomass had minor variations, while accumulation of nitrogen was strongly influenced by species diversity (r = 0.94, n = 10, p <0.001) and production of above-ground biomass


2019 ◽  
Vol 11 (7) ◽  
pp. 1941 ◽  
Author(s):  
Yuzhe Li ◽  
Jiangwen Fan ◽  
Hailing Yu

Grasslands in northern China form an important ecological barrier that prevents and controls desertification. The Beijing–Tianjin Sand Source Control (BTSSC) Project has been implemented to restore grassland in order to control sand sourced pollution. This study aimed to understand the impacts of four applied restoration practices on the productivity, composition, and species diversity of vegetation communities in the BTSSC Project. The results indicated the following: (1) All the restoration practices tended to increase the height and cover of communities, and the effect was most obvious where grazing was excluded; (2) total biomass (87%), above-ground biomass (164%) and below-ground biomass (58%) only increased consistently when grazing was excluded from the steppe; (3) fenced and grazing exclusion practice significantly increased the abundance of species in communities, but all the practices tended to decrease the evenness of species; and, (4) the correlation analysis revealed that the Shannon–Wiener diversity index, and Pielou evenness index, showed significant negative correlations with the above-ground biomass of grassland communities after restoration, while no significant relationships were shown in reference plots. Our comparison of applied practices in the BTSSC project revealed that grazing exclusion might be a high priority for more successful restoration in this region.


2020 ◽  
Vol 61 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Ramandeep Kaur M. Malhi ◽  
Akash Anand ◽  
Ashwini N. Mudaliar ◽  
Prem C. Pandey ◽  
Prashant K. Srivastava ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 295 ◽  
Author(s):  
Yuanyuan Wang ◽  
Jinghua Yu ◽  
Lu Xiao ◽  
Zhaoliang Zhong ◽  
Qiong Wang ◽  
...  

The conservation of species diversity and improvement of forest structure are essential roles of the Natural Reserve Policy and the Natural Forest Protection Program (NFPP) in China. However, the long-term effects of NFPP are still not well-defined, and a natural reserve (Liangshui) and surrounding region were surveyed as a proxy of NFPP for approaching the protection effects. Our results showed that long-term conservation significantly altered the dominant species in the herb layer (80% of species), followed by shrub (58%) and tree layers (50%); there was a 1.6-8.0-fold increase in abundance in Corylus shrubs, Acer trees and Carex grass, but a 1.3–10.0-fold abundance decrease in larch trees, Athyrium herbs and Lonicera shrubs. In contrast, tree species diversity and distribution evenness increased by 31% and 23.4% in the reserve, respectively. Forest protection in the reserve also led to the forest structural alteration with the observation of larger-sized trees and shorter herbs, but relatively sparse forests (smaller tree density). Structural equation modeling manifested that the reserve directly altered forest structure, at a coefficient of 0.854, nearly two-fold higher than its impact on diversity (0.459) and dominant species (−0.445). The most affected parameters were plant size (trees and herbs) and tree density related to forest structure, tree diversity, herb richness and evenness for diversity traits, and Oxalidaceae and Rosaceae for dominant species. This study provides basic data that can be used to evaluate the impact of the nature reserve in NE China, and these findings can be used to guide the implementation of NFPP in the long-term in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shiva Pokhrel ◽  
Chungla Sherpa

Forests provide numerous ecosystem goods and services. Their roles are considered as important for both climate mitigation and adaptation program. In Nepal, there are significant forest resources which are distributed in different regions; however, the studies on the spatial tree species distribution and the above-ground biomass and their relationship at the landscape level have not been well studied. This study aims to analyze the relationship, distribution of tree species diversity, and above-ground biomass at a landscape level. The data used for this study were obtained from the Forest Research and Training Center of Nepal, International Centre for Integrated Mountain Development (ICIMOD), and Worldwide Wildlife Fund (WWF-Nepal). The landscape has a mean of 191.89 tons ha−1 of the above-ground biomass. The highest amount of the above-ground biomass measured was 650 tons ha−1 with 96 individual trees, and the least was 3.428 tons ha−1. The measured mean height of the tree was 11.77 m, and diameter at breast height (DBH) was 18.59 cm. In the case of the spatial distribution of the above-ground biomass, plots distributed at the middle altitude range greater than 900 meters above sea level (m. a. s. l) to 3000 meters above sea level taking more amount of the above-ground biomass (AGB). Similarly, the highest plot-level Shannon diversity index (H’) was 2.75 with an average of 0.96 at the middle altitude region followed by the lower region with an average of 0.89 and least 0.87 at a higher elevation. Above-ground biomass (R2 = 0.48) and tree height (R2 = 0.506) significantly increased with increasing elevation up to a certain level increased of elevation. Diameter at breast height (DBH) showed significance (R2 = 0.364) but small increase with increasing elevation, while the relationship among tree species diversity index, above-ground biomass, and elevation showed a weak and very weak positive relationship with R2 = 0.018 and R2 = 0.002, respectively. Based on the overall results, it is concluded that elevation has some level of influence on the forest tree diversity and above-ground biomass. The finding of this study could be useful for landscape-level resource management and planning under various changes.


Sign in / Sign up

Export Citation Format

Share Document