scholarly journals Assesment of interactions berwwn the predatory bug Orius insidiosus and predatory mite Phytoseiulus persimilis in biological control on greenhouse cucumber

2000 ◽  
Vol 36 (No. 3) ◽  
pp. 85-90 ◽  
Author(s):  
R. Fejt ◽  
V. Jarošík

2021 ◽  
pp. 1-18
Author(s):  
André Abou-Haidar ◽  
Patil Tawidian ◽  
Hana Sobh ◽  
Margaret Skinner ◽  
Bruce Parker ◽  
...  

Abstract The greenhouse cucumber pests, Bemisia tabaci (Hemiptera: Aleyrodidae), Frankliniella occidentalis (Thysanoptera: Thripidae), and Tetranychus urticae (Acari: Tetranychidae), are major threats to the production of greenhouse cucumbers (Cucurbitaceae) in Lebanon. The development of insecticide resistance by these pests has prompted the use of alternative and sustainable pest management strategies. In this study, we used integrated pest management strategies, including the release of the biological control agents, Amblyseius swirskii Athias-Henriot (Mesostigmata: Phytoseiidae) and Phytoseiulus persimilis Athias-Henriot (Mesostigmata: Phytoseiidae), to control whitefly, thrips, and two-spotted spider mite populations on greenhouse cucumber plants in two commercial production sites (sites A and B). We also compared the efficacy of pest population suppression using the integrated pest management strategy with that of chemical pest control. Our results show that biological control effectively maintains the cucumber pest populations below the economic threshold when coupled with additional integrated pest management measures. In addition, we show that biological control agents were equally or more effective in pest population suppression compared to eight and 12 insecticidal and acaricidal sprays performed in the control greenhouses at sites A and B, respectively. Altogether, our results show the efficacy of adopting integrated pest management and biological control for pest population suppression in greenhouse cucumber production under Mediterranean environmental conditions.


1990 ◽  
Vol 122 (5) ◽  
pp. 975-983 ◽  
Author(s):  
David R. Gillespie ◽  
Donald M.J. Quiring

AbstractA soil-dwelling predatory mite, Geolaelaps sp. nr. aculeifer (Canestrini), introduced inundatively at a rate of 6000 mites per plant to the sawdust substrate of hydroponically grown, greenhouse cucumbers significantly reduced numbers of fungus gnat, Bradysia spp., larvae and adults over a 10-week period. Inundative introductions of 1600 mites per plant reduced emergence of western flower thrips, Frankliniella occidentalis (Pergande), adults to about 30% of that in the controls over a 40-day trial. An inoculative introduction of 125 mites per plant to cucumber plants in selected rows in a commercial greenhouse reduced peak fungus gnat numbers to about 20% of those in untreated rows. These results suggest that a single inoculative introduction of Geolaelaps sp. nr. aculeifer, early in the crop cycle, would maintain control of fungus gnat populations in greenhouse cucumber crops at an acceptable level. This predator would also contribute to biological control of western flower thrips by reducing emergence of adults.


2021 ◽  
Vol 104 (4) ◽  
pp. 218-222
Author(s):  
V. V. Moor ◽  
A. I. Anisimov ◽  
E. G. Kozlova*

The two-spotted spider mite Tetranychus urticae is a dangerous polyphagous pest of agricultural and ornamental plants. In a commercial greenhouse treated with acaricides or biological control using predatory mite Phytoseiulus persimilis individual varieties of roses differed significantly in terms of the average annual infestation by the pest mite. On the poorly populated rose varieties, the biological control agent application was more effective as compared to the acaricides. To effectively control the pest, the required predatory mite rates were 4.6–8.7 times higher on varieties with a minimal spider mite infestation (Aqua and Deep Water) as compared to the maximal pest infestation (Heaven and Brazil).


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 691-694 ◽  
Author(s):  
George P. Opit ◽  
Greg K. Fitch ◽  
David C. Margolies ◽  
James R. Nechols ◽  
Kimberly A. Williams

The effects of overhead and drip tube irrigation on twospotted spider mite (TSMs) (Tetranychus urticae Koch) and predatory mite (PMs) (Phytoseiulus persimilis Athias-Henriot) populations, as well as the biological control of TSMs by PMs, were investigated on Impatiens wallerana Hook. f. `Impulse Orange'. To determine the effects of the two irrigation methods on TSM populations, plants were inoculated with female TSMs 6 weeks after seeding. Plants were then irrigated twice every three days, and TSM counts were taken 3 weeks later. To assess the effects of irrigation method on PMs, plants were inoculated with TSMs 6 weeks after seeding, PMs were released 10 days later, plants were irrigated about once per day, and the number of predatory mites on plants was counted 3 weeks after release. To assess the effects of irrigation method on the biological control of TSMs by PMs, plants were inoculated with TSMs and PMs were released as before, but then plants were irrigated either three times every 2 days or three times every 4 days using either drip or overhead irrigation. The number of TSMs on plants and the number of leaves showing TSM feeding injury were measured 3 weeks after predator release. Overhead watering significantly reduced TSM and PM populations as much as 68- and 1538-fold, respectively, compared to drip irrigation with microtubes. Perhaps more important, overhead watering with or without predators significantly reduced the number of leaves sustaining TSM feeding injury as much as 4-fold compared to drip irrigation. These results confirm the common observation that TSM infestations and injury may be reduced by irrigation systems that wet plant foliage. However, predators still reduced TSMs even though overhead irrigation had a suppressive effect on predatory mites. Predators are particularly useful for reducing TSM injury when plants are watered infrequently. Overhead watering could be used in tandem with biological control as a component of an integrated crop management program for TSMs in ornamental greenhouses by rapidly lowering TSM population levels in hot spots before PMs are released.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazuki Togashi ◽  
Mifumi Goto ◽  
Hojun Rim ◽  
Sayaka Hattori ◽  
Rika Ozawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document