Experimental Investigation of Upgraded Diesel Fuel with Copper Oxide Nanoparticles on Performance and Emissions Characteristics of Diesel Engine

Author(s):  
Sherry Khulief ◽  
Tarek M. Aboul-Fotouh
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ajin C. Sajeevan ◽  
V. Sajith

Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.


Energy ◽  
2021 ◽  
Vol 229 ◽  
pp. 120611
Author(s):  
Ümit Ağbulut ◽  
Suat Sarıdemir ◽  
Upendra Rajak ◽  
Fikret Polat ◽  
Asif Afzal ◽  
...  

Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Sign in / Sign up

Export Citation Format

Share Document