scholarly journals First Estimation of Reference Intervals for Thyroid-Stimulating Hormone and Thyroid Hormones in Slovenian Population

2021 ◽  
Vol 68 (2) ◽  
pp. 488-493
Author(s):  
Adrijana Oblak ◽  
Ajda Biček ◽  
Edvard Pirnat ◽  
Katja Zaletel ◽  
Simona Gaberšček

For thyroid function estimation and clinical decision making, use of appropriate reference intervals for thyroid-stimulating hormone (TSH), free thyroxine (fT4) and free triiodothyronine (fT3) is crucial. For each laboratory, establishment of own reference intervals is advised. For the first Slovenian estimation of reference intervals for thyroid hormones a large group of 1722 healthy individuals without thyroid disease was established retrospectively. Hormone analyses were performed on automated analyser Advia Centaur XP Immunoassay System (Siemens Healthineers), which reference intervals for TSH, fT4 and fT3 were 0.55–4.78 mIU/L, 11.5–22.7 pmol/L, and 3.5–6.5 pmol/L, respectively. Statistical analysis followed non-parametric percentile method. Our laboratory reference intervals for TSH, fT4 and fT3 are mostly narrower than intervals given by manufacturer. Median value, lower and upper limit for TSH, fT4 and fT3 were 1.98 (0.59–4.23) mIU/L, 14.5 (11.3–18.8) pmol/L and 4.82 (3.79–6.05) pmol/L, respectively. Most likely, an inclusion of a high number of healthy individuals without thyroid disease was a reason for such results.

2009 ◽  
Vol 55 (11) ◽  
pp. 2019-2025 ◽  
Author(s):  
H Alec Ross ◽  
Martin den Heijer ◽  
Ad R M M Hermus ◽  
Fred C G J Sweep

Abstract Background: Examination of the 2-dimensional probability distribution of thyroid-stimulating hormone (TSH) and free thyroxine (FT4) shows that the widths of the TSH and FT4 reference intervals derived from this bivariate distribution are mutually interdependent, an aspect commonly ignored when interpreting thyroid testing results with separate reference intervals for TSH and FT4. We desired to establish and critically evaluate a composite reference interval for TSH and FT4 to allow bivariate classification of biochemical thyroid conditions. Methods: FT4 and TSH results of 871 healthy individuals [361 women and 510 men, 18–40 years old, without history of thyroid-related disease or medication, negative for anti–thyroid peroxidase (anti-TPO) antibody] were transformed to standard normal variables by logarithmic transformation with correction for skewness and subsequent normalization. We established a 95% reference interval of the distance of each FT4/TSH pair of values to the center of the 2-dimensional probability distribution. Results: The bivariate 95% reference interval is enclosed by a circular profile with radius 2.45 SD. By contrast, conventional reference intervals comprise a square with the boundaries of −1.96 and +1.96 SD for both FT4 and TSH that enclose only 90% of all data. Compared with the ±1.96 SD square, the bivariate reference interval classified 4% fewer of 3651 healthy individuals older than 40 years as subclinically hyperthyroid and 14% fewer of 712 anti-TPO–positive healthy individuals as subclinically hypothyroid. Conclusions: Conventional application of separate cutoff values for FT4 and TSH leads to overestimation of the incidence of subclinical thyroid disease. Application of a composite overall reference interval is recommended.


2021 ◽  
Vol 53 (04) ◽  
pp. 272-279
Author(s):  
Chaochao Ma ◽  
Xiaoqi Li ◽  
Lixin Liu ◽  
Xinqi Cheng ◽  
Fang Xue ◽  
...  

AbstractThyroid hormone reference intervals are crucial for diagnosing and monitoring thyroid dysfunction during early pregnancy, and the dynamic change trend of thyroid hormones during pregnancy can assist clinicians to assess the thyroid function of pregnant women. This study aims to establish early pregnancy related thyroid hormones models and reference intervals for pregnant women. We established two derived databases: derived database* and derived database#. Reference individuals in database* were used to establish gestational age-specific reference intervals for thyroid hormones and early pregnancy related thyroid hormones models for pregnant women. Individuals in database# were apparently healthy non-pregnant women. The thyroid hormones levels of individuals in database# were compared with that of individuals in database* using nonparametric methods and the comparative confidence interval method. The differences in thyroid stimulating hormone and free thyroxine between early pregnant and non-pregnant women were statistically significant (p<0.0001). The reference intervals of thyroid stimulating hormone, free thyroxine and free triiodothyronine for early pregnant women were 0.052–3.393 μIU/ml, 1.01–1.54 ng/dl, and 2.51–3.66 pg/ml, respectively. Results concerning thyroid stimulating hormone and free thyroxine reference intervals of early pregnancy are comparable with those from other studies using the same detection platform. Early pregnancy related thyroid hormones models showed various change patterns with gestational age for thyroid hormones. Early pregnancy related thyroid hormones models and reference intervals for pregnant women were established, so as to provide accurate and reliable reference basis for the diagnosing and monitoring of maternal thyroid disfunction in early pregnancy.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yonghong Sheng ◽  
Dongping Huang ◽  
Shun Liu ◽  
Xuefeng Guo ◽  
Jiehua Chen ◽  
...  

Ethnic differences in the level of thyroid hormones exist among individuals. The American Thyroid Association (ATA) recommends that an institution or region should establish a specific thyroid hormone reference value for each stage of pregnancy. To date, a limited number of studies have reported the level of thyroid hormones in Chinese minorities, and the exact relationship between BMI and thyroid function in pregnant women is ill. This study was performed to establish trimester-specific reference ranges of thyroid hormones in Zhuang ethnic pregnant women and explore the role of body mass index (BMI) on thyroid function. A total of 3324 Zhuang ethnic health pregnant women were recruited in this Zhuang population-based retrospective cross-sectional study. The values of thyroid stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3) were determined by automatic chemiluminescence immunoassay analyzer. Multivariate linear regression and binary logistic regression were constructed to evaluate the influence of BMI on the thyroid function. The established reference intervals for the serum thyroid hormones in three trimesters were as follows: TSH, 0.02–3.28, 0.03–3.22, and 0.08-3.71 mIU/L; FT4, 10.57–19.76, 10.05–19.23, and 8.96–17.75 pmol/L; FT3, 3.51–5.64, 3.42–5.42, and 2.93–5.03 pmol/L. These values were markedly lower than those provided by the manufacturers for nonpregnant adults which can potentially result in 6.10% to 19.73% misclassification in Zhuang pregnant women. Moreover, BMI was positively correlated with isolated hypothyroxinemia (OR=1.081, 95% CI=1.007–1.161), while the correlation between the BMI and subclinical hypothyroidism was not statistically significant (OR=0.991, 95% CI=0.917–1.072). This is the first study focusing on the reference ranges of thyroid hormones in Guangxi Zhuang ethnic pregnant women, which will improve the care of them in the diagnosis and treatment. We also found that high BMI was positively associated with the risk of isolated hypothyroxinemia.


Author(s):  
Julian H Barth ◽  
Ahai Luvai ◽  
Nuthar Jassam ◽  
Wycliffe Mbagaya ◽  
Eric S Kilpatrick ◽  
...  

Introduction Reference intervals are dependent on the reference population, the analytical methods and the way the data are handled statistically. Individual method-related differences have been studied but the comparative differences in reference intervals have not. Methods We studied a reference population of healthy adult subjects and measured free thyroxine and thyroid-stimulating hormone by the four most commonly used analytical platforms used in the UK. Subjects were excluded if they were > 65 years or had positive thyroid peroxidase antibodies. We also performed a systematic literature review of thyroid hormone reference interval studies in non-pregnant adults. Results In total, 303 subjects were recruited and 42 excluded. The central 95th centile values for thyroid-stimulating hormone (mIU/L) were Abbott Architect (0.51–3.67); Beckman Unicel DxI (0.57–3.60); Roche Cobas (0.60–4.31) and Siemens Advia Centaur XP (0.63–4.29). The 95th centile values for thyroxine (pmol/L) were Abbott Architect (10.6–15.5); Beckman Unicel DxI (7.9–13.0); Roche Cobas (12.5–19.6) and Siemens Advia Centaur XP (11.8–19.0). We identified 55 papers describing thyroid reference intervals in male and non-pregnant female adults. The values for upper and lower reference intervals by manufacturer varied but were not significantly different for thyroid-stimulating hormone but were for thyroxine. Discussion Our study demonstrates clearly that there are marked variations in the reference intervals for thyroid hormones between analytical platforms. There is an urgent need for standardization of thyroid hormone assays to permit transferability of results. Until then, guidelines will need to reflect this method-related difference.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Polyxeni Karakosta ◽  
Leda Chatzi ◽  
Emmanouil Bagkeris ◽  
Vasiliki Daraki ◽  
Dimitris Alegakis ◽  
...  

Estimation and interpretation of thyroid function tests in pregnant women is of utmost importance for maternal, fetal and neonatal health. Our objective was to calculate laboratory- and geography-specific reference intervals for thyroid hormones during pregnancy in an iodine-sufficient area of the Mediterranean, Crete, Greece. This project was performed in the context of “Rhea” mother-child cohort. Fulfillment of extensive questionnaires and estimation of free triiodothyronine (fT3), free thyroxine (fT4), thyroid-stimulating hormone (TSH), and antithyroid antibodies were performed. The reference population was defined using inclusion criteria regarding thyroidal, obstetric, and general medical status of women. Reference interval for TSH was 0.05–2.53 μIU/mL for the first and 0.18–2.73 μIU/mL for the second trimester. 6,8% and 5,9% of women in the first and second trimester, respectively, had TSH higher than the upper reference limit. These trimester-specific population-based reference ranges are essential in everyday clinical practice for the correct interpretation of thyroid hormone values and accurate classification of thyroid disorders.


2020 ◽  
Author(s):  
Cheng Huang ◽  
Ying Wu ◽  
Linong Chen ◽  
Zhiya Yuan ◽  
Shuzhe Yang ◽  
...  

Abstract Background: The reference intervals of thyroid hormone will change at different stages of pregnancy because of physiological alterations. On the other hand, the reference intervals of hyroid hormone will also change in different detection systems due to manufacturer’s methodology as well as different race. The objective in this study was to establish the assay method- and trimester-specific reference intervals for thyroid stimulating hormone, free thyroxine, and free triiodothyronine for pregnant women in the Chengdu.Methods: A prospective, population-based cohort study involved 23701 reference samples of pregnant women during the three trimesters and 8646 non-pregnant women with pre-pregnancy clinical and laboratory tests. The 2.5th and 97.5th percentiles were calculated as the reference intervals for thyroid stimulating hormone, free thyroxine, and free triiodothyronine at each trimester of pregnant women according to ATA Guidelines.Results: The reference interval of thyroid stimulating hormone in the 2.5th and 97.5th percentiles has a significant increasing trend from first trimester, to second trimester, and to third trimester, which was 0.08-3.79 mIU/L for first trimester, and 0.12-3.95 mIU/L for second trimester, and 0.38-4.18 mIU/L for third trimester, respectively (P < 0.001). However, the reference intervals of free thyroxine and free triiodothyronine in the 2.5th and 97.5th percentiles have significant decreasing trends from first trimester, to second trimester, and to third trimester, which were 11.87-18.83 pmol/L and 3.77-5.50 pmol/L for first trimester, and 11.22-18.19 pmol/L and 3.60-5.41 pmol/L for second trimester, and 10.19-17.42 pmol/L and 3.37-4.79 pmol/L for third trimester, respectively (both P < 0.001).Conclusion: It is necessary to establish assay method- and trimester-specific reference intervals for thyroid stimulating hormone, free thyroxine, and free triiodothyronine because the reference intervals of these thyroid hormones are significantly different at different stages of pregnancy.


2017 ◽  
Vol 88 (2) ◽  
pp. 140-146 ◽  
Author(s):  
Veroniqa Lundbäck ◽  
Kerstin Ekbom ◽  
Emilia Hagman ◽  
Ingrid Dahlman ◽  
Claude Marcus

Background/Aims: Thyroid-stimulating hormone (TSH) is affected in obesity and might influence metabolic risk. It is unclear what mechanisms cause elevated TSH in obesity. We aimed to investigate TSH status within the normal range and the association of TSH with degree of obesity and metabolic parameters in children with obesity. Methods: A total of 3,459 children, aged 3.0–17.9 years, were identified in the Swedish Childhood Obesity Treatment Registry, BORIS. Age, gender, TSH, free triiodothyronine (fT3), free thyroxine (fT4), body mass index standard deviation scores (BMI SDS), as well as variables of lipid and glucose metabolism were examined. Results: Children with high-normal TSH (>3.0 mU/L) (28.8%) had higher BMI SDS compared to children with low-normal TSH (<3.0 mU/L) (p < 0.001). Multivariable regression analysis adjusted for age and gender showed that TSH levels were associated with BMI SDS (β: 0.21, 95% CI: 0.14–0.28, p < 0.001). Associations of thyroid hormones with markers of lipid and glucose metabolism were observed, where TSH was associated with fasting insulin, HOMA (homeostatic model assessment of insulin resistance), total cholesterol, and triglycerides. Conclusions: A positive association between TSH levels and BMI SDS was seen in children with obesity. Associations of TSH and free thyroid hormones with glucose metabolism indicated that TSH might be one of several factors acting to determine body weight and obesity co-morbidities, although the underlying mechanism remains unclear.


2020 ◽  
Vol 34 (5) ◽  
Author(s):  
Zhen‐Zhen Li ◽  
Ben‐Zhang Yu ◽  
Ji‐Liang Wang ◽  
Qin Yang ◽  
Jia Ming ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document