scholarly journals Nucleic acid-based biosensors: analytical devices for prevention, diagnosis and treatment of diseases

Revista Vitae ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Laura Carvajal Barbosa ◽  
Diego Insuasty Cepeda ◽  
Andrés Felipe León Torres ◽  
Maria Mercedes Arias Cortes ◽  
Zuly Jenny Rivera Monroy ◽  
...  

BACKGROUND : Biosensing techniques have been the subject of exponentially increasing interest due to their performance advantages such as high selectivity and sensitivity, easy operation, low cost, short analysis time, simple sample preparation, and real-time detection. Biosensors have been developed by integrating the unique specificity of biological reactions and the high sensitivity of physical sensors. Therefore, there has been a broad scope of applications for biosensing techniques, and nowadays, they are ubiquitous in different areas of environmental, healthcare, and food safety. Biosensors have been used for environmental studies, detecting and quantifying pollutants in water, air, and soil. Biosensors also showed great potential for developing analytical tools with countless applications in diagnosing, preventing, and treating diseases, mainly by detecting biomarkers. Biosensors as a medical device can identify nucleic acids, proteins, peptides, metabolites, etc.; these analytes may be biomarkers associated with the disease status. Bacterial food contamination is considered a worldwide public health issue; biosensor-based analytical techniques can identify the presence or absence of pathogenic agents in food. OBJECTIVES: The present review aims to establish state-of-the-art, comprising the recent advances in the use of nucleic acid-based biosensors and their novel application for the detection of nucleic acids. Emphasis will be given to the performance characteristics, advantages, and challenges. Additionally, food safety applications of nucleic acid-based biosensors will be discussed. METHODS: Recent research articles related to nucleic acid-based biosensors, biosensors for detecting nucleic acids, biosensors and food safety, and biosensors in environmental monitoring were reviewed. Also, biosensing platforms associated with the clinical diagnosis and food industry were included. RESULTS: It is possible to appreciate that multiple applications of nucleic acid-based biosensors have been reported in the diagnosis, prevention, and treatment of diseases, as well as to identify foodborne pathogenic bacteria. The use of PNA and aptamers opens the possibility of developing new biometric tools with better analytical properties. CONCLUSIONS: Biosensors could be considered the most important tool for preventing, treating, and monitoring diseases that significantly impact human health. The aptamers have advantages as biorecognition elements due to the structural conformation, hybridization capacity, robustness, stability, and lower costs. It is necessary to implement biosensors in situ to identify analytes with high selectivity and lower detection limits.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4132
Author(s):  
Jung Ho Kim ◽  
Seokjoon Kim ◽  
Sung Hyun Hwang ◽  
Tae Hwi Yoon ◽  
Jung Soo Park ◽  
...  

The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed a simple and reproducible strategy, termed three-way junction (3WJ)-induced transcription amplification, to detect target nucleic acids by rationally combining 3WJ-induced isothermal amplification with a light-up RNA aptamer. In principle, the presence of the target nucleic acid generates a large number of light-up RNA aptamers (Spinach aptamers) through strand displacement and transcription amplification for 2 h at 37 °C. The resulting Spinach RNA aptamers specifically bind to fluorogens such as 3,5-difluoro-4-hydroxybenzylidene imidazolinone and emit a highly enhanced fluorescence signal, which is clearly distinguished from the signal emitted in the absence of the target nucleic acid. With the proposed strategy, concentrations of target nucleic acids selected from the genome of Salmonellaenterica serovar Typhi (S. Typhi) were quantitatively determined with high selectivity. In addition, the practical applicability of the method was demonstrated by performing spike-and-recovery experiments with S. Typhi in human serum.


Author(s):  
Shinnosuke Inoue ◽  
Woon-Hong Yeo ◽  
Jong-Hoon Kim ◽  
Jae-Hyun Chung ◽  
Kyong-Hoon Lee ◽  
...  

Tuberculosis (TB) is an epidemic affecting one-third of the world’s population, mostly in developing and low-resource settings. People having active pulmonary TB are considered highly infectious; therefore, it is critical to identify and treat these patients rapidly before spreading to others. However, the most reliable TB diagnostic methods of bacterial culture or nucleic acid amplification are time-consuming and expensive. The challenge of TB diagnosis lies in highly sensitive and specific screening with low cost. Here, we present an LNA-modified microtip-sensor, which is capable of selectively detecting low-abundance DNA from bacteria. When genomic DNA of Bacillus Calmette-Gue´rin (BCG, a surrogate marker of Mycobacterium bovis), and genomic DNA of Staphylococcus epidermidis (S. epi) are used, the microtip-sensor yields the detection limit of 1,000 copies/mL within 20 minutes. The high sensitivity and specificity approaching nucleic acid amplification methods can potentially overcome the current challenges for rapid TB screening.


2019 ◽  
Vol 17 (30) ◽  
pp. 7222-7227 ◽  
Author(s):  
Rashi Soni ◽  
Deepti Sharma ◽  
A. Murali Krishna ◽  
Jagadeesh Sathiri ◽  
Ashwani Sharma

A Baby Spinach aptamer based minimal-modified sensor (BSMS) detects nucleic acids of potentially any length with high selectivity and specificity, and shows 2.5-fold more fluorescence enhancement compared to the parent aptamer.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1100 ◽  
Author(s):  
Jasmina Vidic ◽  
Priya Vizzini ◽  
Marisa Manzano ◽  
Devon Kavanaugh ◽  
Nalini Ramarao ◽  
...  

Foodborne pathogenic bacteria present a crucial food safety issue. Conventional diagnostic methods are time-consuming and can be only performed on previously produced food. The advancing field of point-of-need diagnostic devices integrating molecular methods, biosensors, microfluidics, and nanomaterials offers new avenues for swift, low-cost detection of pathogens with high sensitivity and specificity. These analyses and screening of food items can be performed during all phases of production. This review presents major developments achieved in recent years in point-of-need diagnostics in land-based sector and sheds light on current challenges in achieving wider acceptance of portable devices in the food industry. Particular emphasis is placed on methods for testing nucleic acids, protocols for portable nucleic acid extraction and amplification, as well as on the means for low-cost detection and read-out signal amplification.


2020 ◽  
Author(s):  
Erika Ganda ◽  
Kristen L. Beck ◽  
Niina Haiminen ◽  
Ban Kawas ◽  
Brittany Cronk ◽  
...  

ABSTRACTAbstractUntargeted sequencing of nucleic acids present in food can inform the detection of food safety and origin, as well as product tampering and mislabeling issues. The application of such technologies to food analysis could reveal valuable insights that are simply unobtainable by targeted testing, leading to the efforts of applying such technologies in the food industry. However, before these approaches can be applied, it is imperative to verify that the most appropriate methods are used at every step of the process: gathering primary material, laboratory methods, data analysis, and interpretation.The focus of this study is in gathering the primary material, in this case, DNA. We used bovine milk as a model to 1) evaluate commercially available kits for their ability to extract nucleic acids from inoculated bovine milk; 2) evaluate host DNA depletion methods for use with milk, and 3) develop and evaluate a selective lysis-PMA based protocol for host DNA depletion in milk.Our results suggest that magnetic-based nucleic acid extraction methods are best for nucleic acid isolation of bovine milk. Removal of host DNA remains a challenge for untargeted sequencing of milk, highlighting that the individual matrix characteristics should always be considered in food testing. Some reported methods introduce bias against specific types of microbes, which may be particularly problematic in food safety where the detection of Gram-negative pathogens and indicators is essential. Continuous efforts are needed to develop and validate new approaches for untargeted metagenomics in samples with large amounts of DNA from a single host.ImportanceTracking the bacterial communities present in our food has the potential to inform food safety and product origin. To do so, the entire genetic material present in a sample is extracted using chemical methods or commercially available kits and sequenced using next-generation platforms to provide a snapshot of what the relative composition looks like. Because the genetic material of higher organisms present in food (e.g., cow in milk or beef, wheat in flour) is around one thousand times larger than the bacterial content, challenges exist in gathering the information of interest. Additionally, specific bacterial characteristics can make them easier or harder to detect, adding another layer of complexity to this issue. In this study, we demonstrate the impact of using different methods in the ability of detecting specific bacteria and highlight the need to ensure that the most appropriate methods are being used for each particular sample.


Author(s):  
Long Wu ◽  
Shuhong Zhou ◽  
Gonglei Wang ◽  
Yonghuan Yun ◽  
Guozhen Liu ◽  
...  

Nanozymes own striking merits, including high enzyme-mimicking activity, good stability, and low cost. Due to the powerful and distinguished functions, nanozymes exhibit widespread applications in the field of biosensing and immunoassay, attracting researchers in various fields to design and engineer nanozymes. Recently, nanozymes have been innovatively used to bridge nanotechnology with analytical techniques to achieve the high sensitivity, specificity, and reproducibility. However, the applications of nanozymes in food applications are seldom reviewed. In this review, we summarize several typical nanozymes and provide a comprehensive description of the history, principles, designs, and applications of nanozyme-based analytical techniques in food contaminants detection. Based on engineering and modification of nanozymes, the food contaminants are classified and then discussed in detail via discriminating the roles of nanozymes in various analytical methods, including fluorescence, colorimetric and electrochemical assay, surface-enhanced Raman scattering, magnetic relaxing sensing, and electrochemiluminescence. Further, representative examples of nanozymes-based methods are highlighted for contaminants analysis and inhibition. Finally, the current challenges and prospects of nanozymes are discussed.


2020 ◽  
Vol 20 (15) ◽  
pp. 1499-1517 ◽  
Author(s):  
Maryam Ghaffari ◽  
Nima Sanadgol ◽  
Mohammad Abdollahi

Recently, manipulation of gene expression and switching genes on or off highlight the potential of nucleic acid-based therapies (NA-BTs). Alzheimer’s Disease (AD) is a common devastating neurodegenerative disease (NDs) responsible for 60-80% of all cases of dementia and predicted as a main public health concern among aged populations. The aim of this study was to outline the current research in the field of NA-BTs for the treatment of AD disabilities, including strategies to suppress the memory and learning defects, to promote recovery processes, and to reinforce social relationships in these patients. This review was performed via evaluating PubMed reported studies from January 2010 to November 2019. Also, reference lists were checked to find additional studies. All intermediation or complementarity of animal models, case-control and cohort studies, and controlled trials (CTs) on specific NA-BTs to AD were acceptable, although in vitro studies were excluded due to the considerable diversities and heterogeneities. After removing the duplicates according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) instruction, we merged remaining titles across search databases. There are 48 ongoing studies related to the application of nucleic acids in the treatment and diagnosis of AD where more consideration is given to DNA targeting strategies (18 targets for vectors and aptamers), antisense oligonucleotides (10 targets), micro-RNAs mimics (7 targets), antagomiRs (6 targets), small interferences-RNAs (5 targets), as well as mRNAs (2 targets) respectively. All of these targets are grouped into 4 categories according to their role in molecular pathways where amyloid-β (18 targets), neural survival (11 targets), memory and cognition (8 targets), and tau (3 targets) are more targeted pathways, respectively. With recent successes in the systemic delivery of nucleic acids via intravenous injection; it is worth investing in the production of new-generation medicines. There are still several challenges for NA-BTs including, their delivery to the effective modulators, mass production at low cost, sustaining efficacy and minimizing off‐target effects. Regarding miRNA-based therapies, given the obvious involvement of miRNAs in numerous facets of brain disease, and the many sophisticated techniques for delivery to the brain, miRNA-based therapies will make new hope for the treatment of neurological diseases such as AD.


2006 ◽  
Vol 315-316 ◽  
pp. 469-473
Author(s):  
Ji Jun Zhu ◽  
H.N. Shi ◽  
J. Cheng ◽  
X.Y. Wei ◽  
Zu Hong Lu

This paper introduces a kind of new homemade and low cost multi-channel nucleic acid pyrosequence detector for at least ninety-six channels and presents the detail of related software and hardware development. We construct a kind of automatic instrument to fulfill the pyrosequencing processes. First we select the X-86 personal computer as host computer, the AT89C51 micro-controller as slave computer, the PMT (photoelectric multiply tube) as photoelectric transformation equipment, and the HY-6022 as data sampling device; Second we use the Visual C++ 6.0 as coding tools to design the measure and control system based on Windows 2000 operating system; Third we sample the fluorescent signal in all of the cuvettes during the reaction between nucleic acid and reagent; Last we analyze these data to realize the function of the multi-channel nucleic acid detection. In this paper the whole instrument design and key parts design are both introduced such as the liquid injection process and related structure design, the communication module between the host personal computer and the MCS51, the high sensitivity multi-channel detector (at least 96 channels, the sensitivity is 2.45×10-9w) etc. The result of the instrument for two channels data processing is also reported in this paper.


2019 ◽  
Vol 9 (11) ◽  
pp. 2364 ◽  
Author(s):  
Yongmei Jia ◽  
Guohua Zhou ◽  
Peilian Liu ◽  
Zhiguo Li ◽  
Biao Yu

Aflatoxin B1 (AFB1) is one of the most frequently-found mycotoxins in contaminated food. As the content of mycotoxins is particularly low in food, the development of probes to detect AFB1 in foods with high sensitivity and selectivity is an urgent social need for the evaluation of food quality. Numerous techniques have been developed to monitor AFB1. Nevertheless, most of them require cumbersome, labor-consuming, and sophisticated instruments, which have limited their application. An aptamer is a single, short nucleic acid sequence that is capable of recognizing different targets. Owing to their unique properties, aptamers have been considered as alternatives to antibodies. Aptasensors are considered to be an emerging strategy for the quantification of aflatoxin B1 with high selectivity and sensitivity. In this review, we summarize recent developments in colormetric, electrochemical, SERS, and fluorescent aptasensors for the quantification of AFB1. Finally, the perspectives and current challenges of aptasensors for AFB1 are outlined.


2016 ◽  
Vol 8 (30) ◽  
pp. 5984-5993 ◽  
Author(s):  
Guirong Li ◽  
Jiekang Li ◽  
Qian Han

(1) Extracting and purifying uranium in complex samples by dCPE with [UO22+–SA1]. (2) Detecting uranium super sensitively by a photocatalytic RF method with [UO22+–SA2]. (3) Coupling with separation, purification and analysis procedures exhibited a number of advantages, including high selectivity, high sensitivity and low cost.


Sign in / Sign up

Export Citation Format

Share Document