scholarly journals Estimation of Cold Carcass Weight and Body Weight from Several Body Measurements in Sheep through Various Data Mining Algorithms

2017 ◽  
Vol 49 (5) ◽  
Author(s):  
Ali Karabacak ◽  
Senol Celik ◽  
Adile Tatliyer ◽  
Ismail Keskin ◽  
Yakup Erdal Erturk ◽  
...  
Author(s):  
Ansar Abbas ◽  
Muhammad Aman Ullah ◽  
Abdul Waheed

This study is conducted to predict the body weight (BW) for Thalli sheep of southern Punjab from different body measurements. In the BW prediction, several body measurements viz., withers height, body length, head length, head width, ear length, ear width, neck length, neck width, heart girth, rump length, rump width, tail length, barrel depth and sacral pelvic width are used as predictors. The data mining algorithms such as Chi-square Automatic Interaction Detector (CHAID), Exhaustive CHAID, Classification and Regression Tree (CART) and Artificial Neural Network (ANN) are used to predict the BW for a total of 85 female Thalli sheep. The data set is partitioned into training (80 %) and test (20 %) sets before the algorithms are used. The minimum number of parent (4) and child nodes (2) are set in order to ensure their predictive ability. The R2 % and RMSE values for CHAID, Exhaustive CHAID, ANN and CART algorithms are 67.38(1.003), 64.37(1.049), 61.45(1.093) and 59.02(1.125), respectively. The mostsignificant predictor is BL in the BW prediction of Thalli sheep. The heaviest BW average of 9.596 kg is obtained from the subgroup of those having BL > 25.000 inches. On behalf of the several goodness of fit criteria, we conclude that the CHAID algorithm performance is better in order to predict the BW of Thalli sheep and more suitable decision tree diagram visually. Also, the obtained CHAID results may help to determine body measurements positively associated with BW for developing better selection strategies with the scope of indirect selection criteria.


2019 ◽  
Vol 14 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Viswam Subeesh ◽  
Eswaran Maheswari ◽  
Hemendra Singh ◽  
Thomas Elsa Beulah ◽  
Ann Mary Swaroop

Background: The signal is defined as “reported information on a possible causal relationship between an adverse event and a drug, of which the relationship is unknown or incompletely documented previously”. Objective: To detect novel adverse events of iloperidone by disproportionality analysis in FDA database of Adverse Event Reporting System (FAERS) using Data Mining Algorithms (DMAs). Methodology: The US FAERS database consists of 1028 iloperidone associated Drug Event Combinations (DECs) which were reported from 2010 Q1 to 2016 Q3. We consider DECs for disproportionality analysis only if a minimum of ten reports are present in database for the given adverse event and which were not detected earlier (in clinical trials). Two data mining algorithms, namely, Reporting Odds Ratio (ROR) and Information Component (IC) were applied retrospectively in the aforementioned time period. A value of ROR-1.96SE>1 and IC- 2SD>0 were considered as the threshold for positive signal. Results: The mean age of the patients of iloperidone associated events was found to be 44years [95% CI: 36-51], nevertheless age was not mentioned in twenty-one reports. The data mining algorithms exhibited positive signal for akathisia (ROR-1.96SE=43.15, IC-2SD=2.99), dyskinesia (21.24, 3.06), peripheral oedema (6.67,1.08), priapism (425.7,9.09) and sexual dysfunction (26.6-1.5) upon analysis as those were well above the pre-set threshold. Conclusion: Iloperidone associated five potential signals were generated by data mining in the FDA AERS database. The result requires an integration of further clinical surveillance for the quantification and validation of possible risks for the adverse events reported of iloperidone.


Author(s):  
Ari Fadli ◽  
Azis Wisnu Widhi Nugraha ◽  
Muhammad Syaiful Aliim ◽  
Acep Taryana ◽  
Yogiek Indra Kurniawan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document