A COUPLED RANDOM FIXED POINT THEOREM IN QUASI-PARTIAL METRIC SPACES

2016 ◽  
Vol 11 (2) ◽  
pp. 161-184
Author(s):  
R. A. Rashwan ◽  
H. A. Hammad
Author(s):  
Valeriu Popa ◽  
Alina-Mihaela Patriciu

In this paper, a general fixed point theorem for two pairs of absorbing mappings in weak partial metric space, using implicit relations, has been proved.


2016 ◽  
Vol 56 (1) ◽  
pp. 129-141
Author(s):  
Valeriu Popa

AbstractThe purpose of this paper is to prove a general fixed point theorem for a pair of multi-valued mappings satisfying a new type of implicit relation in partial metric spaces, which generalizes Theorem 2.2 [4], Theorem 3.1 [3], Theorem 3.2 [7], Corollary 2.3 [4], Theorem 2.8 [16] and obtain other particular results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohammad Imdad ◽  
Ali Erduran

Motivated by Suzuki (2008), we prove a Suzuki-type fixed point theorem employing Chatterjea contraction on partial metric spaces.


Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 833-837 ◽  
Author(s):  
Özlem Acar ◽  
Ishak Altun

In the persent paper, we give Bae and Suzuki type generalizations of Caristi?s fixed point theorem on partial metric space.


Sign in / Sign up

Export Citation Format

Share Document