MINERAL NUTRITION AND TREE ROOT GROWTH

1980 ◽  
pp. 123-136
Author(s):  
M.P. COUTTS ◽  
J.J. PHILIPSON
HortScience ◽  
2019 ◽  
Vol 54 (6) ◽  
pp. 1067-1076 ◽  
Author(s):  
Ryan C. Costello ◽  
Dan M. Sullivan ◽  
David R. Bryla ◽  
Bernadine C. Strik ◽  
James S. Owen

New markets for organic northern highbush blueberry (Vaccinium corymbosum L.) have stimulated interest in using composts specifically tailored to the plant’s edaphic requirements. Because composts are typically neutral to alkaline in pH (pH 7 to 8), and blueberry requires acidic soil (pH 4.2 to 5.5), we investigated elemental sulfur (S0) addition as a methodology for reducing compost pH. The objectives were to 1) characterize initial compost chemistry, including the pH buffering capacity of compost (acidity required to reduce pH to 5.0), 2) measure changes in compost chemistry accompanying acidification, and 3) evaluate plant growth and mineral nutrition of blueberry in soil amended with an untreated or acidified compost. Ten composts prepared from diverse feedstocks were obtained from municipalities and farms. Addition of finely ground S0 reduced compost pH from 7.2 to 5.3, on average, after 70 d at 22 °C, and increased the solubility of nutrients, including K (from 22 to 36 mmol(+)/L), Ca (from 5 to 19 mmol(+)/L), Mg (from 5 to 20 mmol(+)/L), and Na (from 6 to 9 mmol(+)/L). Sulfate-S, a product of S0 oxidation, also increased from 5 to 45 mmol(−)/L. The composts were incorporated into soil at a high rate (30% v/v) in a greenhouse trial to evaluate their suitability for use in blueberry production. Shoot and root growth were strongly affected by compost chemical characteristics, including pH and electrical conductivity (EC). Potassium in compost was highly variable (2–32 g·kg−1). Concentration of K in the leaves increased positively in response to compost K, whereas shoot dry weight and root growth declined. Leaf Mg also declined in response to compost K, suggesting that elevated K concentrations in compost may cause Mg deficiency. Composts with the highest K were also high in total N, pH, and EC. Compost acidification to pH ≤ 6 improved growth and increased leaf Mg concentration. On the basis of these results, composts derived from animal manures or young plant tissues (e.g., green leaves) appear to be unsuitable for high-rate applications to blueberry because they usually require high amounts of S0 for acidification and are often high in EC and K, whereas those derived from woody materials, such as local yard debris, appear promising based on their C:N ratio, compost acidification requirement, and EC.


1996 ◽  
Vol 26 (12) ◽  
pp. 2145-2152 ◽  
Author(s):  
George A. Schier ◽  
Carolyn J. McQuattie

Mycorrhizal colonization and nutrient supply may have important effects on aluminum toxicity in trees grown on acidic, nutrient-poor soils. The interacting effects of mycorrhizal inoculation, nutrient level, and Al treatment on growth and mineral nutrition of pitch pine (Pinusrigida Mill.) seedlings grown with and without the ectomycorrhizal fungus Pisolithustinctorius (Pers.) Coker & Couch were determined. The seedlings were grown for 66 days in sand irrigated with 0.1- or 0.2-strength nutrient solution (pH 3.8) containing 0, 10, or 20 mg/L Al (0, 0.37, or 0.74 mM). Across nutrient and Al levels total dry weight of ectomycorrhizal (ECM) seedlings was 75% greater than that of nonmycorrhizal (NM) seedlings. Doubling the nutrient level increased the dry weight of NM seedlings by 120%, versus 60% for ECM seedlings. Aluminum reduced root and shoot growth in NM seedlings, but had no effect on shoot growth and only a marginally significant effect on root growth of ECM seedlings. Shoot growth of NM seedlings was more sensitive to Al than root growth. Increased growth of NM seedlings by doubling the nutrient level was least at the highest Al level. Symptoms of Al toxicity in roots (dark, stunted tips) occurred at a lower Al level in NM than ECM seedlings. A strong relationship was not found between Al toxicity and concentrations of Mg and Ca in roots and needles. Enhancement of growth resulting from increased uptake of nutrients due to mycorrhizal inoculation (and) or an increased level of nutrients was the overriding factor affecting the response of pitch pine seedlings to Al.


1994 ◽  
Vol 25 (13-14) ◽  
pp. 2491-2499 ◽  
Author(s):  
Ciro A. Rosolem ◽  
Joston S. Assis ◽  
Antonio D. Santiago

1988 ◽  
Vol 18 (9) ◽  
pp. 1167-1171 ◽  
Author(s):  
D. L. Godbold ◽  
K. Dictus ◽  
A. Hüttermann

Norway spruce (Piceaabies) (L.) Karst.) seedlings were grown in nutrient solutions containing 334, 664, or 1000 μmol•dm−3 nitrate in the presence or absence of 500 μmol•dm−3 aluminium. Over 7 days the rate of root elongation was severely reduced by Al, irrespective of the NO3 concentration. Root elongation was inhibited within 12 h of exposure and this was associated with a displacement of Ca and Mg by Al in the roots. After 35 days, Al significantly reduced Mg and Ca contents of roots and needles. This effect was independent of the NO3 supply. Root growth was stimulated at 1000 μmol•dm−3 NO3 compared with 664 and 334 μmol•dm−3 NO3. This stimulation was inhibited by 500 μmol•dm−3 Al. The results show that spruce seedlings are sensitive to Al, and that NO3 does not modify the toxicity of Al.


1992 ◽  
Vol 32 (7) ◽  
pp. 879 ◽  
Author(s):  
AD Robson ◽  
NE Longnecker ◽  
LD Osborne

Most duplex soils in Western Australia are characterised by multiple nutrient deficiencies. Applications of micronutrients, as well as the macronutrients phosphorus, potassium, nitrogen and sulfur, have been essential for crop and pasture production on these soils. Duplex soils are characterised by heterogeneity in the distribution of mineral nutrients with depth. Additionally, there is heterogeneity both vertically and horizontally in suitability of soil conditions for root growth. There are at least 2 consequences of this heterogeneity for the mineral nutrition of plants on duplex soils. First, there are important effects of localised nutrient supply on root growth and nutrient uptake. Second, identification of nutrient deficiencies by soil and plant analysis is complicated by variation in nutrient supply through time and with depth. These 2 consequences are examined.


Author(s):  
E. Sathiyavani N.K. Prabaharan ◽  
K. Krishna Surendar

Sign in / Sign up

Export Citation Format

Share Document