FIELD-TESTING PEACH ROOTSTOCK SELECTIONS FOR TOLERANCE TO PEACH TREE SHORT LIFE AND REPLANT SITES IN SOUTH CAROLINA

2004 ◽  
pp. 429-434
Author(s):  
G.L. Reighard ◽  
D.R. Ouellette ◽  
T.G. Beckman ◽  
K.H. Brock ◽  
D.R. Newall Jr.
HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 596C-596
Author(s):  
Gregory L. Reighard ◽  
Eldon I. Zehr ◽  
Freddi Hammerschlag

Peach tree short life (PTSL) is a serious peach tree disease syndrome on replant orchard sites in the Southeast. Pseudomonas syringae pv. syringae is a bacterial disease often associated with tree injury and death on these PTSL sites. Rootstocks that have better tolerance to ring nematodes such as Lovell have less PTSL death. Tissue-cultured peach embryos and/or explants have shown increased resistance to Pseudomonas syringae and Xanthomonas campestris pv. pruni, another bacterial peach pathogen, in laboratory and greenhouse screenings. Tissue-cultured `Redhaven' (RH), `Redskin' (RS), and `Sunhigh' (SH) peach cultivars on their own roots were planted with SH seedlings and RH and RS budded to Lovell rootstock on a severe PTSL site in South Carolina. Treatments beside cultivar/rootstock combination included preplant fumigation vs. nonfumigation. PTSL appeared in the third year and by year 4 significant tree death occurred. Tissue-cultured RH, RS, and SH trees had 54%, 55%, and 88% PTSL death, respectively, compared to RH (17%) and RS (29%) on Lovell or the SH seedlings (25%). Fumigation significantly decreased PTSL in both RS combinations but not RH. These data suggest that the tolerance of the cultivar root system to PTSL-inducing factors such as ring nematodes was more important in PTSL than scion resistance to bacteria.


HortScience ◽  
1994 ◽  
Vol 29 (6) ◽  
pp. 673-677 ◽  
Author(s):  
W.R. Okie ◽  
G.L. Reighard ◽  
T.G. Beckman ◽  
A.P. Nyczepir ◽  
C.C. Reilly ◽  
...  

Long-term field trials of a wide range of peach [Prunus persica (L.) Batsch] germplasm on two peach tree short-life (PTSL) sites revealed marked differences in survival among lines. Generally, cuttings and seedlings of a given line performed similarly, as did ungrafted seedlings and their counterparts grafted to a commercial cultivar. No apparent relationship existed between a line's chilling requirement and survival. B594520-9 survived best in Georgia and South Carolina, providing significantly greater longevity than Lovell, the standard rootstock for use on PTSL sites. B594520-9 is derived from root-knot-nematode-resistant parentage, and progeny of surviving seedlings have demonstrated root-knot resistance similar to Nemaguard seedlings.


HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 101-103 ◽  
Author(s):  
T.G. Beckman ◽  
P.L. Pusey

Armillaria root rot is the second leading cause of peach tree mortality (after peach tree short life) in the southeastern United States. Currently, there are no commercially available rootstocks for peach with proven resistance to this pathogen in the United States. Since 1983, we have been screening rootstock candidates for resistance to Armillaria utilizing naturally infected field sites. Inoculation of peach [Prunus persica (L.) Batsch], plum (P. cerasifera J.F. Ehrh., P. munsoniana F.W. Wight & Hedr., P. salicina Lindl. or P. angustifolia Marsh.) × peach and plum × plum hybrid rootstocks with infected plant tissue (such as acorns, Quercus sp.) prior to planting has provided a significantly increased infection and mortality of candidate rootstock lines in comparison with sole reliance on natural inoculum on an infested site.


HortScience ◽  
1990 ◽  
Vol 25 (3) ◽  
pp. 359 ◽  
Author(s):  
Gregory L. Reighard ◽  
William A. Watson ◽  
D.C. Coston ◽  
John D. Ridley
Keyword(s):  

HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 1062-1065 ◽  
Author(s):  
T.G. Beckman ◽  
W.R. Okie ◽  
A.P. Nyczepir ◽  
P.L. Pusey ◽  
C.C. Reilly

Nearly 5000 seedling trees representing more than 100 peach [Prunus persica (L.) Batsch.] and plum (Prunus spp.) lines were planted at a 4 × 0.6-m spacing in Jan. 1983, on a site with a known history of peach tree short life (PTSL) and Armillaria root rot (ARR). Trees were arranged in a randomized complete-block with eight replicates of six trees each. Beginning in Spring 1984 and each year thereafter the cause of tree death was determined. At the end of 9 years, 50% of the trees had succumbed to PTSL and 35% had been killed by ARR apparently caused by Armillaria tabescens. Analysis of the data for trees killed by ARR showed a wide range in mortality, some peach lines appeared significantly more tolerant to ARR than others. Plum lines derived from native North American species also appeared to be a potential source of improved tolerance. We did not establish whether ARR tolerance is affected by PTSL.


Plant Disease ◽  
2004 ◽  
Vol 88 (9) ◽  
pp. 1000-1004 ◽  
Author(s):  
Guido Schnabel ◽  
P. Karen Bryson ◽  
William C. Bridges ◽  
Phillip M. Brannen

Single-spore isolates of Monilinia fructicola were collected from commercial orchards in South Carolina and Georgia with prolonged past exposure to demethylation inhibitor (DMI) fungicides and from an orchard with no DMI history (baseline population). Sensitivity to propiconazole was determined using the concentration in agar media required to suppress radial growth of mycelium by 50% (EC50. Mean EC50 values from six South Carolina populations were not different from the baseline population (P < 0.05). Two of five populations from Georgia revealed (significantly higher mean EC50 values compared with the baseline population (P < 0.05). Isolates with high (AP5 and AP6) and low (DL71 and DL72) EC50 values were selected to determine disease incidence on peach fruit after protective or curative applications of propiconazole at 0.15 or 0.3 liter/ha (half and full label rate, respectively). Disease incidence was significantly greater on peaches inoculated with AP5 and AP6 after curative treatment with propiconazole at 0.15 liter/ha (P < 0.05). Following protective or curative treatments at 0.3 liter/ha, disease incidence was significantly greater for AP6 but not for AP5. These results suggest that a shift toward reduced sensitivity has developed in some M. fructicola populations from Georgia, and that isolates with reduced sensitivity to propiconazole are more difficult to control in the field. Field testing of DMI fungicides, captan, QoI fungicides, and fenhexamid in experimental orchards) indicated that the DMI fungicides are still among the most efficacious products for brown rot (control, and that new products containing QoI fungicides may be viable disease control alternatives or rotation partners.


Sign in / Sign up

Export Citation Format

Share Document