IDENTIFICATION OF S-ALLELES IN 25 SWEET CHERRY (PRUNUS AVIUM L.) CULTIVARS BY ALLELE-SPECIFIC PCR AMPLIFICATION

2009 ◽  
pp. 619-622 ◽  
Author(s):  
A. Ershadi ◽  
E.H. Moghadam
2019 ◽  
Author(s):  
Maryam Bagheri ◽  
Ahmad Ershadi

AbstractIn the present study, the S-alleles of eighteen pear cultivars, (including fourteen cultivars planted commercially in Iran and four controls) are determined. 34 out of 36 S-alleles are detected using nine allele-specific primers, which are designed for amplification of S101/S102, S105, S106, S107, S108, S109, S111, S112 and S114, as well as consensus primers, PycomC1F and PycomC5R. S104, S101 and S105 were the most common S-alleles observed, respectively, in eight, seven and six cultivars. In 16 cultivars, (‘Bartlett’ (S101S102), ‘Beurre Giffard’ (S101S106), ‘Comice’ (S104S105), ‘Doshes’ (S104S107), ‘Koshia’ (S104S108), ‘Paskolmar’ (S101S105), ‘Felestini’ (S101S107), ‘Domkaj’ (S104S120), ‘Ghousi’ (S104S107), ‘Kaftar Bache’ (S104S120), ‘Konjoni’ (S104S108), ‘Laleh’ (S105S108), ‘Natanzi’ (S104S105), ‘Sebri’ (S101S104), ‘Se Fasleh’ (S101S105) and ‘Louise Bonne’ (S101S108)) both alleles are identified but in two cultivars, (‘Pighambari’ (S105) and ‘Shah Miveh Esfahan’ (S107)) only one allele is recognized. It is concluded that allele-specific PCR amplification can be considered as an efficient and rapid method to identify S-genotype of Iranian pear cultivars.


1996 ◽  
Vol 75 (05) ◽  
pp. 757-759 ◽  
Author(s):  
Rainer Blasczyk ◽  
Markus Ritter ◽  
Christian Thiede ◽  
Jenny Wehling ◽  
Günter Hintz ◽  
...  

SummaryResistance to activated protein C is the most common hereditary cause for thrombosis and significantly linked to factor V Leiden. In this study, primers were designed to identify the factor V mutation by allele-specific PCR amplification. 126 patients with thromboembolic events were analysed using this technique, PCR-RFLP and direct sequencing. The concordance between these techniques was 100%. In 27 patients a heterozygous factor VGln506 mutation was detected, whereas one patient with recurrent thromboembolism was homozygous for the point mutation. Due to its time- and cost-saving features allele-specific amplification should be considered for screening of factor VGln506.


1997 ◽  
Vol 98 (3) ◽  
pp. 767-771 ◽  
Author(s):  
THIERRY PETIT ◽  
MARC DOMMERGUES ◽  
GÉRARD SOCIÉ ◽  
YVES DUMEZ ◽  
ELIANE GLUCKMAN ◽  
...  

Author(s):  
Agnes Kivistik ◽  
Liina Jakobson ◽  
Kersti Kahu ◽  
Kristiina Laanemets

AbstractThe pollination of self-incompatible diploid sweet cherry is determined by the S-locus alleles. We resolved the S-alleles of 50 sweet cherry cultivars grown in Estonia and determined their incompatibility groups, which were previously unknown for most of the tested cultivars. We used consensus primers SI-19/20, SI-31/32, PaConsI, and PaConsII followed by allele-specific primers and sequencing to identify sweet cherry S-genotypes. Surprisingly, 48% (24/50) of the tested cultivars, including 17 Estonian cultivars, carry the rare S-allele S17, which had initially been described in wild sweet cherries in Belgium and Germany. The S17-allele in Estonian cultivars could originate from ‘Leningradskaya tchernaya’ (S6|S17), which has been extensively used in Estonian sweet cherry breeding. Four studied cultivars carrying S17 are partly self-compatible, whereas the other 20 cultivars with S17 have not been reported to be self-compatible. The recommended pollinator of seven self-incompatible sweet cherries is of the same S-genotype, including four with S17-allele, suggesting heritable reduced effectiveness of self-infertility. We classified the newly genotyped sweet cherry cultivars into 15 known incompatibility groups, and we proposed four new incompatibility groups, 64–67, for S-locus genotypes S3|S17, S4|S17, S5|S17, and S6|S17, respectively, which makes them excellent pollinators all across Europe. Alternatively, the frequency of S17 might be underestimated in Eastern European populations and some currently unidentified sweet cherry S-alleles might potentially be S17.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 943-947 ◽  
Author(s):  
Wim Broothaerts ◽  
Ilse Van Nerum ◽  
Johan Keulemans

Apple cultivars display a self-incompatibility system that restricts self-fertilization and fertilization between cultivars bearing identical S-alleles. There has been considerable progress in identification of S-alleles in apple in recent years and methods are now available for the accurate S-genotyping of cultivars. Following a recently revised numerical identification system for apple S-alleles, we present the first extensive compilation of apple cultivars with their S-genotypes. This list contains data from our own investigations using S-allele-specific PCR methodology, including a number of new data, as well as published data from various other sources. Eighteen different S-alleles are discriminated, which allowed the determination of the S-genotypes for 150 diploid or triploid European, American, and Japanese cultivars. Many of these cultivars are cultivated worldwide for their fruit. Also included are a number of old, obsolete cultivars and a few nondomestic genotypes. We observed a wide variation in the frequency of S-alleles in the apple germplasm. Three S-alleles (S2, S3, and S9) are very common in the cultivars evaluated, presumably as a result of the widespread use of the same breeding parents, and seven alleles are very rare (S4, S6, S8, S16, S22, S23, S26).


Sign in / Sign up

Export Citation Format

Share Document