scholarly journals POROSITY AND PERMEABILITY PROPERTIES OF CONSOLIDATED ROCKS OF THE NORTHERN NEAR EDGE ZONE OF THE DNIEPER-DONETSK DEPRESSION

Author(s):  
S. Vyzhva ◽  
V. Onyshchuk ◽  
I. Onyshchuk ◽  
M. Reva ◽  
O. Shabatura

Paper concerned the researches of porosity and permeability properties of consolidated rocks (siltstones, poor-porous sandstones) of the northern near edge zone of the Dnieper-Donetsk depression. The purpose of the research was to study the petrophysical parameters of the consolidated reservoir rocks, as the basis of the integrated analysis of their physical properties. Such reservoir parameters as the open porosityfactor and void factor, permeability coefficient and residual water saturation factor were studied. Void structure of rocks with capillarimetric method was studied. The relationship of the density of rocks with their porosity was also studied. The porosity study was carried out in atmospheric and reservoir conditions. The bulk density of dry rock samples varies: for siltstones from 2232 kg/m3 to 2718 kg/m3 (mean 2573 kg/m3 ), for sandstones from 2425 kg/m3 to 2673 kg/m3 (mean 2555 kg/m3); water saturated rocks – for siltstones from 2430 to 2727 kg/m3 (mean 2622 kg/m3 ), for sandstones from 2482 kg/m3 to 2688 kg/m3 (mean 2599 kg/m3 ). An apparent specific matrix density varies: for siltstones from 2645 to 2740 kg/m3 (mean 2683 kg/m3 ), for sandstones from 2629 kg/m3 to 2730 kg/m3 (mean 2664 kg/m3). The open porosity coefficient of studied rocks, in a case they were saturated with the synthetic brine, varies: for siltstones from 0,008 to 0,074 (mean 0,034), for sandstones from 0,013 to 0,087 (mean 0,041), if samples were saturated with nitrogene (N2) then it varies: for siltstones from 0,013 to 0,076 (mean 0,040), for sandstones from 0,022 to 0.095 (mean 0.052). The effective porosity factor has following values: for siltstones 0,0003–0,0050 (mean 0,00026), for sandstones 0,0013–0,0293 (mean 0,0048). Analysis of reservoir conditions modeling revealed that porosity coefficient varies: for siltstones from 0,007 to 0,060 (mean 0,028), for consolidated sandstones from 0,011 to 0,081 (mean 0,037). Due to the closure of microcracks under rock loading reduced to reservoir conditions the porosity decreases in comparison with atmospheric conditions, which causes a relative decrease in the porosity coefficient for siltstones from 14 to 19,5 % (mean 17,0 %), for sandstones from 7,5 to 18.0 % (mean 10,5 %). Capillaryometric studies by centrifuging determined that the void space of the studied rocks has the following structure: for siltstones, the content of hypercapillary pores varies from 1 to 6 % (mean 3 %); the content of capillary pores – from 1 to 11 % (mean 5 %), the content of subcapillary pores – from 84 to 97 % (mean 92 %); for sandstones, the content of hypercapillary pores varies from 1 to 18 % (mean 4%); content of capillary pores – from 2 to 40 % (mean 10 %), the content of subcapillary pores – from 43 to 96 % (mean 86 %). According to the results of laboratory measurements of the permeability coefficient, this parameter varies: for siltstones from 0,002 fm2 to 1,981 fm2 (mean 0,279 fm2 ), for sandstones from 0,002 fm2 to 1,492 fm2 (mean 0,176 fm2 ). The correlation analysis has allowed to establish a series of empirical relationships between the reservoir parameters (density, porosity coefficient, permeability coefficient, effective porosity factor and residual water saturation factor). These relationships can be used in the data interpretation of geophysical studies of wells and in the modeling of the porosity and permeability properties of consolidated rocks of the northern near edge zone of the Dnieper-Donetsk depression.

Author(s):  
S. Vyzhva ◽  
V. Onyshchuk ◽  
I. Onyshchuk ◽  
M. Reva ◽  
O. Shabatura

The main objective of this article is to highlight the results of investigations of filtration capacity features of sandstones and argillites of the Upper Carbon rocks in Runovshchynska area of The Dnieper-Donets basin. The purpose of the research was to assess the promising rocks as possible hydrocarbon reservoirs. The following reservoir features of rock samples such as the open porosity factor, permeability coefficients and residual water saturation factor have been investigated. The correlation of rock density with their porosity was also studied. The porosity study was carried out in atmospheric and reservoir conditions by gas volumetric method and fluid saturation. The bulk density of dry rock samples varies from 2,122 kg/m3 to 2,615 kg/m3 (average 2318 kg/m3), saturated rocks – from 2265 to 2680 kg/m3 (average 2449 kg/m3), and the specific matrix density – from 2562 to 2786 kg/m3 (average 2650 kg/m3). The open porosity coefficient of the studied rocks, in case they were saturated with the synthetic brine, varies from 0.058 to 0.190 (mean 0.126), but if they were saturated with N2 it varies from 0.066 to 0.203 (mean 0.145). Detailed analysis of reservoir conditions modeling revealed that porosity coefficient varies from 0.038 to 0.175 (mean 0.110). Due to the closure of microcracks under rock loading reduced to reservoir conditions the porosity decreases in comparison with atmospheric conditions, which causes a relative decrease in the porosity coefficient from 4.5% to 13.8% (mean 9.0%) from atmospheric conditions to reservoir conditions. The permeability coefficient of rocks varies from 0.03 fm2 to 240.57 fm2 (mean 11.87 fm2). The residual water saturation factor of rocks varies from 0.02 to 0.89 (mean 0.36). The classification of the reservoir characteristics of the investigated samples by the permeability coefficients and residual water saturation factors has been fulfilled. The correlation analysis has allowed establishing a series of empirical relationships between the reservoir parameters of the studied rocks (density, porosity coefficient, permeability coefficient and residual water saturation factor). The results of complex petrophysical researches indicated that the promising oil-bearing intervals of the horizons G-6, G-7v, G-7n have, in general increased values of reservoir parameters.


Author(s):  
S. Vyzhva ◽  
V. Onyshchuk ◽  
I. Onyshchuk ◽  
O. Oliinyk ◽  
M. Reva ◽  
...  

The paper concerns the researches of the Lower Permian carbonate deposits reservoir properties of western part of Hlynsko-Solohivska area of gas-oil-bearing district of Dnieper-Donets depression. Such reservoir parameters as the open porosity factor, permeability coefficients and residual water saturation factor have been used to assess the promising rocks for the possible hydrocarbon reservoirs. Void structure of rocks with capillarimetric method and the correlation of rock density with their porosity were also studied. The porosity study was carried out in atmospheric and reservoir conditions. The bulk density of dry rock samples varies from 2212 kg/m3 to 2593 kg/m3 (mean 2413 kg/m3), water saturated rocks – from 2442 to 2642 kg/m3 (mean 2549 kg/m3), kerosene saturated rocks – from 2400 to 2622 kg/m3 (mean 2541 kg/m3); an apparent specific matrix density – from 2718 to 2828 kg/m3 (mean 2783 kg/m3). The open porosity coefficient of study rocks, saturated with the synthetic brine, varies from 0.045 to 0.181 (mean 0.127), if samples are saturated with kerosene then it varies from 0.049 to 0.184 (mean 0.128) and when N2 is used - from 0.063 to 0.217 (mean 0.149). The effective porosity has following values: 0.004-0.125 (0.036), and the residual water saturation factor - 0.4-0.97 (0.79). Analysis of reservoir conditions modeling revealed that porosity coefficient varies from 0.040 to 0.169 (mean 0.118). Due to the closure of microcracks under rock loading reduced to reservoir conditions the porosity decreases in comparison with atmospheric conditions, which causes a relative decrease in the porosity coefficient from 1.5 % to 11 % (mean 9.0 %). Capillar void of study rocks describes the prevalence of subcapillar pores (40-97 %, mean 79 %) while the overcapillars pores have range 1-22 % (mean 7 %) and the capillar pores - 2-38 % (mean 14 %). The permeability coefficient varies from 0.038 fm2 to 1.992 fm2 (mean 0.323 fm2). As result of petropysical researches the rocks have been classified with above mentioned reservoir parameters. The correlation analysis has allowed to establish a series of empirical relationships between the reservoir parameters (density, porosity coefficient, permeability coefficient and residual water saturation factor).


2021 ◽  
pp. 3570-3586
Author(s):  
Mohanad M. Al-Ghuribawi ◽  
Rasha F. Faisal

     The Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, where the most common porosity types were the primary (interparticle) and secondary (moldic and vugs) . The main diagenetic process that occurred in YA0, YA2, and YB1 is cementation, which led to the filling of pore spaces by cement and subsequently decreased the reservoir quality (porosity and permeability). Based on the results of the final digital  computer interpretation and processing (CPI) performed by using the Techlog software, the units YA1 and YB2 have the best reservoir properties. The unit YB2 is characterized by a good effective porosity average, low water saturation, good permeability, and large thickness that distinguish it from other reservoir units.


Author(s):  
Sudad Hameed AL-OBAIDI ◽  
Victoria SMIRNOV ◽  
Hiba Hussein ALWAN

Experimental determination of the physical properties of rocks under conditions simulating in situ reservoir conditions is of great importance both for the calculation of reserves and for the interpretation of well logging data. In addition, it is also important for the preparation of hydrocarbon field development projects. The study of the processes of changes in the petrophysical properties of the reservoir under controlled conditions allows not only to determine their reliability but also to evaluate the dynamics of these changes depending on the temperature and pressure conditions of the reservoir and the water saturation of the rocks. In this work, an evaluation of the dependence of the physical properties of hydrocarbon reservoirs on their water saturation (Sw) was carried out. Residual water saturation (Swr) was created in the rocks and the properties of these rocks were compared at the states of partial (25 %) and complete water saturation (100 %). The changes in petrophysical parameters of partially water saturated rocks during the increase in effective pressure were studied and estimates of these changes were obtained. The results showed that when the effective pressure is increased, the Swr increases by an average of 6 % compared to atmospheric conditions. This is accompanied by an increase in the velocity of longitudinal (by 51.9 % on average) and lateral waves (by 37.1 % on average). As residual water saturation increases, effective permeability decreases for both standard and reservoir conditions, with, gas permeability decreasing for both dry samples (by 23 % on average) and samples with residual water saturation (effective permeability decreases by 27 % on average). HIGHLIGHTS Changes in physical properties of hydrocarbon reservoirs by determining physical properties (permeability, porosity, elastic, electrical, deformation strength) under the standard conditions and in physical modelling of reservoir conditions and processes Assessment of the effectiveness of water saturation on the physical properties of the reservoir Comparisons between the petrophysical properties of reservoir core samples in which the pore space is fully saturated with the reservoir fluid model and samples with residual water saturation Experimental determination of the physical properties of rocks under conditions simulating in situ reservoir conditions Estimation of the changes in petrophysical parameters of partial water-saturated rocks during the increase in effective formation pressure GRAPHICAL ABSTRACT


2021 ◽  
pp. 60-74
Author(s):  
G. A. Smolyakov ◽  
N. V. Gilmanova ◽  
A. V. Sivkova

The article deals with the determination of the reservoir properties of Permian-age carbonate rocks. There is a section dissection technique, taking into account the fossil organisms prevailing for a particular geological age. It was noted a high content of silica in the lower Artinskian deposits of Toravey and Varandey fields of the Komi Republic. The presence of silicon is associated with an increase in the population of siliceous sponges during this period of sedimentation; this fact caused the maximum values of porosity and permeability in the corresponding intervals. However, this was also the reason for the high values of the residual water saturation factor and, as a result, low oil flow rates from the lower Artinskian stage. The need for detailed correlation and accounting for the content of fossils in the rocks when dissecting the well section made it necessary to systematize the available actual material on core and well testing. It became obvious that the separation of reservoirs and stages at the qualitative level isn't possible, so quantitative estimates of the parameters that are significantly different for the upper and lower Artinskian deposits and allow you to dissect the well section were proposed.


Author(s):  
S. Vyzhva ◽  
D. Onyshchuk ◽  
N. Reva ◽  
V. Onyshchuk

This paper deals with the technique and results of research into petroelectrical properties of complex terrigenous and carbonate reservoirs. Analyzed are electric data and their relation to capacity properties of Devonian limestones and Cambrian sandstones from Dobrotvirska area of Volyno-Podilia. The objective of the research was to build petroelectrical models of reservoir rocks based on the electrical parameters and their relation to capacity properties. Data on specific resistivity of reservoir rocks were used for specifying the range of its variation for different types and groups of rocks. These data were also essential for identifying the stratigraphic horizons, cross-sections and facies, as well as finding the relationship between specific resistivity and a range of factors such as mineral composition, pore structure, substance phase ratio, electric field intensity and frequency, and resistivity variations with epigenetic transformation and metamorphic changes in rocks. Laboratory data on electrical resistivity of rocks made it possible to interpret the results of employing electrometric well logging methods and electric exploration. Petrophysical laboratory data enabled us to determine the following properties: rock density (dry and saturated with synthetic brine), effective porosity (nitrogen and synthetic brine saturation methods), residual water saturation factor (by centrifugation), permeability (nitrogen stationary filtration method), interval time (P-wave velocity) and resistivity. There were obtained laboratory data on specific resistivity of rock samples (dry, partly and fully saturated with synthetic brine) in atmospheric and in simulated in-situ conditions. We estimated the petroelectrical parameters of Cambrian sandstones and Devonian limestones from Dobrotvirska area to find an empirical correlation between petroelectrical parameters, porosity and permeability of the studied rocks. The correlations are mainly approximated by power function and serve as the basis for geological interpretation of geophysical data. Electrometric methods have proved to be a powerful tool in both laboratory and field rock studies, being efficient enough to provide extensive information on rock properties.


2020 ◽  
pp. 67-76
Author(s):  
G. E. Stroyanetskaya

The article is devoted to the usage of models of transition zones in the interpretation of geological and geophysical information. These models are graphs of the dependences of oil-saturation factors of the collectors on their height above the level with zero capillary pressure, taking into account the geological and geophysical parameter. These models are not recommended for estimating oilsaturation factors of collectors in the transition zone. The height of occurrence of the collector above the level of zero capillary pressure can be estimated from model of the transition zone that take into account the values of the coefficients of residual water saturation factor of the collectors, but only when the model of the transition zone is confirmed by data capillarimetry studies on the core.


Author(s):  
S. Vyzhva ◽  
V. Onyshchuk ◽  
I. Onyshchuk ◽  
M. Reva ◽  
O. Shabatura

The main objective of this article is to study electrical parameters of sandstones and argillites of the Upper Carbon rocks in the Runovshchynska area of the Dnieper-Donets basin. It has been determined that specific electrical resistivity of dry rock samples (specific electrical resistivity of rock matrix) varies from 44,802 kΩ·m to 6,115 МΩ·m (average 751,328 kΩ·m). Specific electrical resistivity of sandstones is 3,45 times more than argillitesdue to different shaliness of studied rocks. Specific electrical resistivity of saturated rocks samples varies from 0,54 Ω·m to 10,46 Ω·m (average 1,23 Ω·m). Specific electrical resistivity of argillites is 2,46 times more than sandstones because the latter had high content of reservoir water in their pores (sandstones had better conductivity). It has been determined that formation resistivity factor of sandstones in atmospheric conditions varies from 6,05 to 33,71 (argillites 11,8), and argillites – from 4,76 to 51,47 (average 17,4). Physical modelling of reservoir conditions (temperature t = 78,5°С, pressure p = 31–31,9 MPa, mineralization M= 170 g/l) showed that specific electrical resistivity varies from 0,3 Ω·m to 3,0 Ω·m (average 0,75 Ω·m). Sandstones in reservoir conditions had the range from 0,3 Ω·m to 2,3 Ω·m (average 0,7 Ω·m), and argillites – from 0,5 Ω·m to 3,0 Ω·m (average 1,2 Ω·m). In this case, specific electrical resistivity of argillites is 1,6 times more than sandstones. Due to the closure of microcracks and the deformation of the pore space, the electrical resistance of rocks increases with increasing pressure. The dependence of formation resistivity enlargement factor on pressure for the studied rocks is expressed by 2-order polynomials. The formation resistivity factor of the studied rocks in reservoir conditions has been determined. It was defined that sandstones in reservoir conditions had the range of the formation resistivity factor from 5,4 to 63,3 (average 20,3), and porosity coefficient – from 0,038 to 0,175 (average 0,113). The range of the formation resistivity factor for argillites was from 13,4 to 88,7 (average 34,3), and porosity coefficient – from 0,043 to 0,115 (average 0,086). Analysis of data of laboratory electrometric investigations has allowed establishing correlations between the porosity coefficient and formation resistivity factor. In addition, the correlation of electrical parameters of rocks in atmospheric and reservoir conditions and the formation resistivity enlargement factor from the water saturation coefficient, taking into account the lithological varieties of the studied rocks, was established.


2020 ◽  
Vol 5 (1) ◽  
pp. 15-29
Author(s):  
Febrina Bunga Tarigan ◽  
Ordas Dewanto ◽  
Karyanto Karyanto ◽  
Rahmat Catur Wibowo ◽  
Andika Widyasari

In conducting petrophysics analysis, there are many methods on each property. Therefore, it is necessary to determine the exact method on each petrophysical property suitable for application in the field of research in order to avoid irregularities at the time of interpretation. The petrophysical property consists of volume shale, porosity, water saturation, etc. This research used six well data named FBT01, FBT02, FBT03, FBT04, FBT05, and FBT06 and also assisted with core data contained in FBT03. Core data used as a reference in petrophysical analysis because it was considered to have represented or closed to the actual reservoir conditions in the field. The area in this research was in Talangakar Formation, "FBT" Field, South Sumatra Basin. The most suited volume shale method for “FBT” field condition was gamma ray-neutron-density method by seeing its photo core and lithology. As for the effective porosity, the most suited method for the field was neutron-density-sonic method by its core. Oil-water contact was useful to determine the hydrocarbon reserves. Oil-water contact was obtained at a depth of 2277.5 feet on FBT01, 2226.5 feet on FBT02, 2312.5 feet on FBT03, 2331 feet on FBT04, 2296 feet on FBT05, and 2283.5 feet on FBT06. The oil-water contact depth differences at Talangakar formation in FBT field caused by structure in subsurface.


Author(s):  
Egor Sobina ◽  

The monograph is dedicated to current problem which is the development of appliance of centralised system of characterising the solid materials and substances porosity and permeability unit’s realisation and transfer methodology. The monograph considered the mix of means and methods allowing to increase the measurement validity and accuracy, to maintain a possibility of measuring equipment refreshing with more accomplished instruments, as well as to expand national measurement and calibration capabilities of the highest accuracy. The monograph is intended for metrologists, scientific workers, engineers, pre- and post-graduate students of oil & gas qualifications, as well as experts whose studies are to develop, test, verify and use the means of measurement of gas specific adsorption, specific surface and specific volume of pores, pore size, effective porosity and gas permeability coefficient for solid materials and substances.


Sign in / Sign up

Export Citation Format

Share Document