scholarly journals Solar Pv Fed Grid Connected System With Reactive Power And Harmonics Compensation

Author(s):  
M.Balasubramanian Et.al

The aim of this paper is to use renewable energy sources to meet the demand for electricity. For DC-AC conversion, a solar-powered three-phase grid-connected system with a boost (DC-DC) converter and three-phase inverter is used. The updated Perturb and Observe (P&O) Algorithm is used to map the solar photovoltaic system's maximum power point. Synchronous Reference Frame-Phase Locked Loop Theory is used to compensate for harmonic and reactive power. This proposed grid-connected system is used to improve the system's power efficiency as well as extract the full power and feed it to the distribution system. Using Matlab tools, the simulation result demonstrates reasonable efficiency.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2326 ◽  
Author(s):  
Alessandro Palmieri ◽  
Alessandro Rosini ◽  
Renato Procopio ◽  
Andrea Bonfiglio

The primary regulation of photovoltaic (PV) systems is a current matter of research in the scientific community. In Grid-Feeding operating mode, the regulation aims to track the maximum power point in order to fully exploit the renewable energy sources and produce the amount of reactive power ordered by a hierarchically superior control level or by the local Distribution System Operator (DSO). Actually, this task is performed by Proportional–Integral–Derivative (PID)-based regulators, which are, however, affected by major drawbacks. This paper proposes a novel control architecture involving advanced control theories, like Model Predictive Control (MPC) and Sliding Mode (SM), in order to improve the overall system performance. A comparison with the conventional PID-based approach is presented and the control theories that display a better performance are highlighted.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Busra Uzum ◽  
Ahmet Onen ◽  
Hany M. Hasanien ◽  
S. M. Muyeen

In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.


2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


2021 ◽  
Vol 22 (1) ◽  
pp. 113-127
Author(s):  
Mulualem Tesfaye ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Neeraj Gupta ◽  
...  

Abstract Generation of renewable energy sources and their interfacing to the main system has turn out to be most fascinating challenge. Renewable energy generation requires stable and reliable incorporation of energy to the low or medium voltage networks. This paper presents the microgrid modeling as an alternative and feasible power supply for Institute of Technology, Hawassa University, Ethiopia. This microgrid consists of a 60 kW photo voltaic (PV) and a 20 kW wind turbine (WT) system; that is linked to the electrical distribution system of the campus by a 3-phase pulse width modulation scheme based voltage source inverters (VSI) and supplying power to the university buildings. The main challenge in this work is related to the interconnection of microgrid with utility grid, using 3-phase VSI controller. The PV and WT of the microgrid are controlled in active and reactive power (PQ) control mode during grid connected operation and in voltage/frequency (V/F) control mode, when the microgrid is switched to the stand-alone operation. To demonstrate the feasibility of proposed microgrid model, MATLAB/Simulink software has been employed. The performance of fully functioning microgrid is analyzed and simulated for a number of operating conditions. Simulation results supported the usefulness of developed microgrid in both mode of operation.


A reliable grid connected Photovoltaic (PV) system require effective control schemes for efficient use of solar energy. This paper presents a three-phase grid tied PV system with decoupled real and reactive power control to achieve desired power factor with Maximum Power Point Tracking (MPPT) controller to get maximum solar energy. The synchronous reference frame (dq) control along with decoupling concept is used to control the DC-AC inverter output, while the Phase Locked Loop (PLL) synchronization technique is used to monitor and synchronize the voltage and current at the grid side. The DC-DC converter with Incremental Conductance (InC) based MPPT model is also designed in this paper due to better accuracy compared to Perturb & Observe (P&O) algorithm. The simulation is performed in MATLAB/SIMULINK and a 31.5 kW PV system is modelled to get 30 kW power with the help of MPPT at Standard Test Conditions (STC). Any power factor value between 0.85 lagging to 0.9 leading can be obtained by changingreference q current in this inverter control strategy. The simulation results show that the change of reactive powerdoes not affecttheactive power values of the system, which verifies the effectiveness of the decoupled control strategy of the inverter.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4949
Author(s):  
Haonan Wang ◽  
Markus Kraiczy ◽  
Denis Mende ◽  
Sebastian Stöcklein ◽  
Martin Braun

Due to higher penetration of renewable energy sources, grid reinforcements, and the utilization of local voltage control strategies, a significant change in the reactive power behavior as well as an increased demand for additional reactive power flexibility in the German power system can be predicted. In this paper, an application-oriented reactive power management concept is proposed, which allows distribution system operators (DSO) to enable a certain amount of reactive power flexibility at the grid interfaces while supporting voltage imitations in the grid. To evaluate its feasibility, the proposed concept is applied for real medium voltage grids in the south of Germany and is investigated comprehensively in different case studies. The results prove the feasibility and reliability of the proposed concept, which allows the DSO to control the reactive power exchange at grid interfaces without causing undesired local voltage problems. In addition, it can be simply adjusted and widely applied in real distribution grids without requiring high investment costs for complex information and communication infrastructures. As a significant contribution, this study provides an ideal bridging solution for DSOs who are facing reactive power issues but have no detailed and advanced monitoring system for their grid. Moreover, the comprehensive investigations in this study are performed in close cooperation with a German DSO, based on a detailed grid model and real measurement data.


Author(s):  
Mohammad Rustam M. L. ◽  
F. Danang Wijaya

Under various external conditions, grid connected PV system performance is strongly affected by the topology that is used to connect a PV system with grid. This research aims to design a multistring based converter topology for three-phase grid connected 200 kW PV system that has a high performance in various operating conditions. Research was done by a simulation method using Matlab-Simulink with performance being evaluated including the generated power, efficiency, power quality in accordance with grid requirements, as well as the power flow. In the simulation, multistring converter topology was designed using two dc-dc boost multistring converters connected in parallel to a centralized of three-phase three-level NPC inverter with the size of the string being shorter and more parallel strings as well as the maximum voltage of the PV array of 273.5 V close to dc voltage reference of 500 V. Each dc-dc boost multistring converter have individual MPPT controllers. The simulation results showed that this multistring converter topology had a high performance in various operating conditions. This due to more power generated by the NPC inverter (> 190 kW) at the time of high power generation on the STC conditions (1000 W/m2, 25 oC), the lowest efficiency of the total system is 95.08 % and the highest efficiency of the total system is 99.4 %, the quality of the power generated in accordance with the requirements of grid, as well as the inverter put more active power to the grid and less reactive power to the grid. The response of the inverter slightly worse for loads with greater reactive power and unbalanced.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 97 ◽  
Author(s):  
M Jayakumar ◽  
V Vanitha ◽  
V Jaisuriya ◽  
M Karthikeyan ◽  
George Daniel ◽  
...  

Solar power is widely available around the globe but efficient transfer of solar power to the load becomes a challenging task. There are various methods in which the power transfer can be done, the following work proposes a method for efficient tracking of solar power.  MPPT [ maximum power point tracking] algorithm applied on three phase voltage source inverter connected to solar PV array with a three phase load. MPPT is applied on inverter rather than conventionally applying MPPT on DC-DC converter. Perturb and Observe method is applied in the MPPT algorithm to find the optimal modulation index for the inverter to transfer maximum power from the panel. Sine pulse width modulation technique is employed for controlling the switching pattern of the inverter. The algorithm is programmed for changing irradiation and temperature condition. The system does not oscillate about the MPP point as the algorithm set the system at MPP and does not vary till a variation in irradiation is sensed.  The proposed system can be installed at all places and will reduce the cost, size and losses compared to conventional system. 


2012 ◽  
Vol 516-517 ◽  
pp. 1722-1727 ◽  
Author(s):  
Wei Jun Yun ◽  
Gang Yao ◽  
Li Dan Zhou ◽  
Chen Chen ◽  
Jun Min Pan

Nowadays Static Synchronous Compensator (STATCOM) has gradually become one of the representative techniques in the field of dynamic reactive power compensation in the power distribution system. This paper analyzed the topology and the voltage imbalance problem of the up and down capacitors on DC side of the three-phase four-wire STATCOM. In allusion to the imbalance problem of neutral point, a novel control strategy based on the control of zero-sequence current was proposed. By the triple close-loop control strategy, the STATCOM can achieve great control accuracy and dynamic performance. Simulation result proves that the proposed control method is effective.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3364 ◽  
Author(s):  
Francisco García-López ◽  
Manuel Barragán-Villarejo ◽  
Alejandro Marano-Marcolini ◽  
José Maza-Ortega ◽  
José Martínez-Ramos

This paper assesses the behaviour of active distribution networks with high penetration of renewable energy sources when the control is performed in a centralised manner. The control assets are the on-load tap changers of transformers at the primary substation, the reactive power injections of the renewable energy sources, and the active and reactive power exchanged between adjacent feeders when they are interconnected through a DC link. A scaled-down distribution network is used as the testbed to emulate the behaviour of an active distribution system with massive penetration of renewable energy resources. The laboratory testbed involves hardware devices, real-time control, and communication infrastructure. Several key performance indices are adopted to assess the effects of the different control actions on the system’s operation. The experimental results demonstrate that the combination of control actions enables the optimal integration of a massive penetration of renewable energy.


Sign in / Sign up

Export Citation Format

Share Document