scholarly journals Expression of the ToxA and PtrPf2 genes of the phytopathogenic fungus Pyrenophora tritici-repentis at the beginning of the infection process

2019 ◽  
Author(s):  
Nina V. Mironenko ◽  
Alexandra S. Orina ◽  
Nadezhda M. Kovalenko

This study shows that the necrotrophic effector gene ToxA is differentially expressed in isolates of P. tritici-repentis fungus at different time periods after inoculation of the wheat variety Glenlea which has the gene Tsn1 controlling sensitivity to the necrosis inducing toxin Ptr ToxA. Two P. tritici-repentis isolates with different ability to cause necrosis on the leaves of Glenlea variety (nec + and nec-) and with different expression level of ToxA and gene of factor transcription PtrPf2 in vitro were used for analysis. Isolates of P. tritici-repentis are characterized by the differential expression of ToxA in planta. The expression of the ToxA gene in P. tritici-repentis ToxA+ isolates significantly increased when infected the wheat leaves compared to ToxA expression results obtained in vitro. The levels of ToxA expression in both isolates differed significantly after 24, 48 and 96 hours after inoculation, however, the dynamics of the trait change over time were similar. However, the highest ToxA expression in the virulent (nec+) isolate in contrast with the avirulent (nec-) isolate was observed at a point of 48 hours. Whereas the expression of regulating transcription factor PtrPf2 in planta differed imperceptibly from expression in vitro throughout the observation period. Obviously, the role of the fungal transcription factor in regulating the effector gene expression weakens in planta, and other mechanisms regulating the expression of pathogen genes at the biotrophic stage of the disease develop.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Tiago Rinaldi Jacob ◽  
Marcelo Luiz de Laia ◽  
Leandro Marcio Moreira ◽  
Janaína Fernandes Gonçalves ◽  
Flavia Maria de Souza Carvalho ◽  
...  

The type IV secretion system (T4SS) is used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells.Xanthomonas citrisubsp.citricontains two copies of the T4SS, one in the chromosome and the other is plasmid-encoded. To understand the conditions that induce expression of the T4SS inXcc, we analyzed,in vitroandin planta, the expression of 18 ORFs from the T4SS and 7 hypothetical flanking genes by RT-qPCR. As a positive control, we also evaluated the expression of 29 ORFs from the type III secretion system (T3SS), since these genes are known to be expressed during plant infection condition, but not necessarily in standard culture medium. From the 29 T3SS genes analyzed by qPCR, onlyhrpAwas downregulated at 72 h after inoculation. All genes associated with the T4SS were downregulated onCitrusleaves 72 h after inoculation. Our results showed that unlike the T3SS, the T4SS is not induced during the infection process.


2020 ◽  
Vol 110 (10) ◽  
pp. 1727-1736
Author(s):  
K. W. Thilini Chethana ◽  
Junbo Peng ◽  
Xinghong Li ◽  
Qikai Xing ◽  
Mei Liu ◽  
...  

The Lasiodiplodia theobromae genome encodes numerous glycoside hydrolases involved in organic matter degradation and conducive to pathogen infection, whereas their molecular mechanisms are still largely unknown. Here, we identified the glycoside hydrolase family 28 endopolygalacturonase LtEPG1 in L. theobromae and characterized its function in detail. LtEPG1 acts as a virulence factor during L. theobromae infection. Overexpression and silencing of LtEPG1 in L. theobromae led to significantly increased and decreased lesion areas, respectively. Further, the high transcript level of LtEPG1 during the infection process supported its virulence function. Polygalacturonase activity of LtEPG1 was substantiated by detecting its ability to degrade pectin. Furthermore, LtEPG1 functioned as microbe-associated molecular patterns during the infection process. Both transient expression of LtEPG1 in planta and infiltration of purified LtEPG1 triggered cell death in Nicotiana benthamiana. Site-directed mutation of LtEPG1 indicated that the enzymatic activity of LtEPG1 is independent from its elicitor activity. A protein kinase, KINβ1, was shown to interact in the yeast two‐hybrid system with LtEPG1. This interaction was further confirmed in vitro using a pull-down assay. Our data indicate that LtEPG1 functions as a polygalacturonase and also serves as an elicitor with two independent mechanisms. Moreover, LtEPG1 may be able to manipulate host immune responses by regulating the KINβ1-mediated signal pathway and consequently promote its own successful infection and symptom development.


2003 ◽  
Vol 16 (8) ◽  
pp. 689-698 ◽  
Author(s):  
Ioannis Stergiopoulos ◽  
Lute-Harm Zwiers ◽  
Maarten A. De Waard

The role in virulence of the ATP-binding cassette (ABC) transporters MgAtr1, MgAtr2, MgAtr3, MgAtr4, and MgAtr5 from Mycosphaerella graminicola was analyzed by gene disruption or replacement on seedlings of the susceptible wheat cultivar Obelisk. Disruption strains of MgAtr1 and MgAtr2 and replacement strains of MgAtr3 and MgAtr5 displayed the same phenotype as control strains, while virulence of the MgAtr4 disruption strains was significantly reduced. This reduction in virulence was independent of the wheat cultivar used. Histopathological analysis of the infection process revealed that MgAtr4 disruption strains colonize substomatal cavities less efficiently and display reduced intercellular growth in the apoplast of wheat leaves. In vitro growth experiments in different media showed no fitness penalty associated with the disruption of MgAtr4. Expression analysis demonstrated that transcripts of the constitutively expressed gene CYP51 encoding the fungal-specific cytochrome P450 sterol 14α-demethylase from M. graminicola were not detectable in interaction RNA from wheat infected with MgAtr4 disruption strains, thus confirming the reduced intercellular growth of these strains. The results indicate that MgAtr4 is a virulence factor of M. graminicola during pathogenesis on wheat and may function in protection against fungitoxic compounds present around the substomatal cavities of wheat leaves. MgAtr4 is the first virulence factor cloned from this important plant pathogen.


Author(s):  
Iwona Chłosta ◽  
Małgorzata Kozieradzka-Kiszkurno ◽  
Dagmara Kwolek ◽  
Izabela Marcińska ◽  
Apolonia Sieprawska ◽  
...  

AbstractEndosperm in cereals such as wheat, is a part of the mature seeds and a valuable source of key substances for humans and animals. For this reason, the development of immature endosperm tissues in planta was the focus of this research. However, it is commonly known that tissue culture conditions can alter the developmental pathway of plant cells and can expose their potency. There is scarce information about research on isolated endosperm in wheat. The development of isolated immature endosperm in the winter bread wheat variety ‘Kobra’, depending on the media composition, is presented in this study. Abscisic acid (ABA) is a key plant growth regulator for proper seed development. The addition of exogenous ABA had a positive impact on the size and ultrastructural features in isolated endosperm, especially of the outer aleurone-like cells. Furthermore, the content of starch in the endosperm cultured on a medium with ABA did not significantly differ from that of caryopsis at the same age, in contrast to soluble carbohydrates. Fluorescein diacetate (FDA) staining and confocal microscopy observation confirmed the viability of the cells from the outer layers. The analysis of internucleosomal fragmentation of DNA in the explants suggests the induction of programmed cell death (PCD) and DNA degradation typical of necrosis. We concluded that the development of isolated immature endosperm in bread wheat depends on the composition of the media. Thus, it could be a model for in vitro studies of this specific storage tissue and its response to culture conditions in bread wheat.


2012 ◽  
Vol 25 (9) ◽  
pp. 1198-1208 ◽  
Author(s):  
Christina Ramel ◽  
Nando Baechler ◽  
Michel Hildbrand ◽  
Martin Meyer ◽  
David Schädeli ◽  
...  

Many strains of the phytopathogenic bacterium Pseudomonas syringae pv. syringae synthesize the virulence factor syringolin A, which irreversibly inactivates the eukaryotic proteasome. Syringolin A, a peptide derivative, is synthesized by a mixed nonribosomal peptide/polyketide synthetase encoded by five clustered genes, sylA to sylE. Biosynthesis of syringolin A, previously shown to be dependent on the GacS/GacA two-component system, occurs in planta and in vitro but only under still culture conditions in a defined medium. Here, we show that the sylC, sylD, and sylE genes of P. syringae pv. syringae B301D-R form an operon transcribed by promoter sequences located between the sylCDE operon and the sylB gene residing on opposite strands. Assays of overlapping sylB and sylCDE promoter deletions translationally fused to the lacZ gene defined promoter sequences required for gene activity both in vitro and in planta. Activation of both promoters depended on the sylA gene encoding a helix-turn-helix (HTH) LuxR-type transcription factor which was shown to directly bind to the promoters. Activity of the sylA gene, in turn, required a functional salA gene, which also encodes an HTH LuxR-type transcription factor. Furthermore, evidence is presented that acyl-homoserine lactone-mediated quorum-sensing regulation is not involved in syringolin A biosynthesis but that oxygen concentration appears to play a role.


2019 ◽  
Vol 32 (3) ◽  
pp. 313-324 ◽  
Author(s):  
Sayo Kodama ◽  
Takumi Nishiuchi ◽  
Yasuyuki Kubo

The cucumber anthracnose fungus Colletotrichum orbiculare forms a specialized infection structure, called an appressorium. Appressorium differentiation relies on fungal perception of physical and biochemical signals at the plant surface. Our previous report showed that the morphogenesis-related NDR (nuclear Dbf2-related) kinase pathway (MOR) is crucial for translating plant-derived signals for appressorium development. Here, we focused on identifying transcriptional regulators downstream of MOR that are involved in plant signal sensing and transduction for appressorium development. Based on whole-genome transcript profiling, we identified a Zn(II)2Cys6 transcription factor, CoMTF4, as a potential downstream factor of MOR. CoMTF4 was expressed in planta rather than in vitro under the control of the NDR kinase CoCbk1. Phenotypes of comtf4 mutants, strains with constitutively active CoCbk1 and strains with constitutive overexpression of CoMTF4 suggested that CoMtf4 acts downstream of MOR. Furthermore, nuclear localization of CoMtf4 was dependent on the MOR and responsive to plant-derived signals that lead to appressorium morphogenesis. Thus, we conclude that CoMtf4 is a transcription factor downstream of MOR that is essential for appressorium morphogenesis and pathogenesis and is regulated in response to plant-derived signals. This study provides insights into fungal sensing of plant signals and subsequent responses critical for appressorium formation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Darcy A. B. Jones ◽  
Evan John ◽  
Kasia Rybak ◽  
Huyen T. T. Phan ◽  
Karam B. Singh ◽  
...  

Abstract The fungus Parastagonospora nodorum infects wheat through the use of necrotrophic effector (NE) proteins that cause host-specific tissue necrosis. The Zn2Cys6 transcription factor PnPf2 positively regulates NE gene expression and is required for virulence on wheat. Little is known about other downstream targets of PnPf2. We compared the transcriptomes of the P. nodorum wildtype and a strain deleted in PnPf2 (pf2-69) during in vitro growth and host infection to further elucidate targets of PnPf2 signalling. Gene ontology enrichment analysis of the differentially expressed (DE) genes revealed that genes associated with plant cell wall degradation and proteolysis were enriched in down-regulated DE gene sets in pf2-69 compared to SN15. In contrast, genes associated with redox control, nutrient and ion transport were up-regulated in the mutant. Further analysis of the DE gene set revealed that PnPf2 positively regulates twelve genes that encode effector-like proteins. Two of these genes encode proteins with homology to previously characterised effectors in other fungal phytopathogens. In addition to modulating effector gene expression, PnPf2 may play a broader role in the establishment of a necrotrophic lifestyle by orchestrating the expression of genes associated with plant cell wall degradation and nutrient assimilation.


2019 ◽  
Author(s):  
Jessica L. Soyer ◽  
Jonathan Grandaubert ◽  
Janine Haueisen ◽  
Klaas Schotanus ◽  
Eva H. Stukenbrock

SummaryDuring infection, pathogens secrete effectors, key elements of pathogenesis. In several phytopathogenic fungi, synchronous waves of effector genes are expressed during plant infection to manipulate and silence plant defenses. In Zymoseptoria tritici, causing septoria leaf blotch of wheat, at least two waves of effector genes are expressed, during the asymptomatic phase and at the switch to necrotrophy. The underlying factors responsible for the fine-tuned regulation of effector gene expression in this pathogen are unknown. Previously, a detailed map of the chromatin structure in vitro of Z. tritici was generated by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) targeting histone modifications typical for euchromatin (di-methylation of the lysine 4 of the histone H3, H3K4me2) or heterochromatin (tri-methylation of the lysine 9 and 27 of the histone H3, H3K9me3 and H3K27me3). Based on the hypothesis that changes in the histone modifications contribute to the transcriptional control of pathogenicity-related genes, we tested whether different sets of genes are associated with different histone modifications in vitro. We correlated the in vitro histone maps with in planta transcriptome data and show that genes located in heterochromatic domains in vitro are highly up-regulated at the switch toward necrotrophy. We combined our integrated analyses of genomic, transcriptomic and epigenomic data with ChIP-qPCR in planta and thereby provide further evidence for the involvement of histone modifications in the transcriptional dynamic of putative pathogenicity-related genes of Z. tritici.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jefferson Allan ◽  
Roshan Regmi ◽  
Matthew Denton-Giles ◽  
Lars G. Kamphuis ◽  
Mark C. Derbyshire

AbstractSclerotinia sclerotiorum is a necrotrophic fungal pathogen that infects upwards of 400 plant species, including several economically important crops. The molecular processes that underpin broad host range necrotrophy are not fully understood. This study used RNA sequencing to assess whether S. sclerotiorum genes are differentially expressed in response to infection of the two different host crops canola (Brassica napus) and lupin (Lupinus angustifolius). A total of 10,864 of the 11,130 genes in the S. sclerotiorum genome were expressed. Of these, 628 were upregulated in planta relative to in vitro on at least one host, suggesting involvement in the broader infection process. Among these genes were predicted carbohydrate-active enzymes (CAZYmes) and secondary metabolites. A considerably smaller group of 53 genes were differentially expressed between the two plant hosts. Of these host-specific genes, only six were either CAZymes, secondary metabolites or putative effectors. The remaining genes represented a diverse range of functional categories, including several associated with the metabolism and efflux of xenobiotic compounds, such as cytochrome P450s, metal-beta-lactamases, tannases and major facilitator superfamily transporters. These results suggest that S. sclerotiorum may regulate the expression of detoxification-related genes in response to phytotoxins produced by the different host species. To date, this is the first comparative whole transcriptome analysis of S. sclerotiorum during infection of different hosts.


Sign in / Sign up

Export Citation Format

Share Document