scholarly journals The reaction of the environment to climate change in the Northern latitudes (on the example of the taiga zone of the Khanty-Mansiysk Autonomous Okrug-Yugra)

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Vera Petrovna Kuznetsova

The article presents results of investigation the impact of modern climate change on the environment in the taiga zone of the Khanty-Mansiysk Autonomous Okrug-Ugra. Long-term indicators of average annual air temperature and the duration of the occurrence of stable snow cover are given according to some meteorological stations in the region. The response of the natural environment is determined based on the analysis of phenological processes under the conditions of climate change in the studied territory. Hazardous hydrometeorological phenomena observed on the territory in Khanty-Mansi Autonomous Okrug-Ugra are presented.

2021 ◽  
Author(s):  
Roman Výleta ◽  
Milica Aleksić ◽  
Patrik Sleziak ◽  
Kamila Hlavcova

<p>The future development of the runoff conditions, as a consequence of climate change, is of great interest for water managers. Information about the potential impacts of climate change on the hydrological regime is needed for long-term planning of water resources and flood protection.</p><p>The aim of this study is to evaluate the possible impacts of climate change on the runoff regime in five selected catchments located in the territory of Slovakia. Changes in climatic characteristics (i.e., precipitation and air temperature) for future time horizons were prepared by a regional climate model KNMI using the A1B emission scenario. The selected climatic scenario predicts a general increase in air temperature and precipitation (higher in winter than in summer). For simulations of runoff under changed conditions, a lumped rainfall-runoff model (the TUW model) was used. This model belongs to a group of conceptual models and follows a structure of a widely used Swedish HBV model. The TUW model was calibrated for the period of 2011 – 2019. We assumed that this period would be similar (to recent/warmer climate) in terms of the average daily air temperatures and daily precipitation totals. The future changes in runoff due to climate change were evaluated by comparing the simulated long-term mean monthly runoff for the current state (1981-2010) and modelled scenarios in three time periods (2011-2040, 2041-2070, and 2071-2100). The results indicate that changes in the long-term runoff seasonality and extremality of hydrological cycle could be expected in the future. The runoff should increase in winter months compared to the reference period. This increase is probably related to a rise in temperature and anticipated snowmelt. Conversely, during the summer periods, a decrease in the long-term runoff could be assumed. According to modelling, these changes will be more pronounced in the later time horizons.</p><p>It should be noted that the results of the simulation are dependent on the availability of the inputs, the hydrological/climate model used, the schematization of the simulated processes, etc. Therefore, they need to be interpreted with a sufficient degree of caution</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Cheryl R. Dykstra ◽  
Jeffrey L. Hays ◽  
Melinda M. Simon ◽  
Ann R. Wegman

Global climate change has advanced the breeding phenology of many avian species. However, raptors’ breeding phenologies may not respond in the same way to the factors that influence passerine breeding dates. We studied reproduction of suburban and rural Red-shouldered Hawks (Buteo lineatus) in southern Ohio, United States, from 1997 to 2020. Mean hatching dates for 786 broods were 24 April [Julian day: 114.1 ± 0.3 d (SE)] for suburban birds and 25 April (Julian day: 114.5 ± 0.4) for rural birds. Egg-laying date averages approximately 33 days before hatching date, or about the third week of March. We used mixed models to test which factors influenced nestling hatching dates from 1997 to 2020. The best model included year, days of snow cover during the pre-laying period (February–March), and mean March temperature, with days of snow cover having the largest effect. Hatching date (in Julian days) was positively related to snow cover and negatively related to air temperature, i.e., young hatched earlier in years with fewer days of snow cover and in warmer years). Young also hatched slightly later as the study progressed. Overall, neither mean hatching date nor any of the weather variables showed a significant trend over the course of the study. Previously published reports indicate that many raptor species do not exhibit advancing hatching dates, and breeding phenologies often reflect local weather conditions. The complexity and diversity of raptor responses to climate change underscore the importance of long-term studies of raptors at multiple locations.


2021 ◽  
Author(s):  
Dominika Hodáková ◽  
Andrea Zuzulová ◽  
Silvia Cápayová ◽  
Tibor Schlosser

The design of pavement structure is as a set of several activities related to the design of road construction, dimension and model calculations. This includes calculations of load effects, taking into account the properties of the materials, the subgrade conditions, and the climatic conditions. The measurements of climatic conditions in Slovakia were the basis for assessing changes in average daily air temperatures in individual seasons. Since the 19th century we have seen in Slovakia an increase in the average air temperature of 1.5 ° C. Currently, there are scenarios of climate change until 2100. An increase in air temperature is assumed, with an increase in average monthly temperatures of 2.0 to 4.8 °C. In road construction, as well as in other areas of engineering, we must respond to current climate change and also to expected changes. The average annual air temperature and the frost index are the critical climatic characteristics are the main for the design (input parameter) and evaluation of pavement. From the practical side it is possible to use the design maps of average annual air temperature and frost index according to STN 73 6114 from year 1997. In cooperation with the Slovak Hydrometeorological Institute from the long-term monitoring of temperatures, different meteorological characteristics were measured in the current period. From the measurements of twelve professional meteorological stations for the period 1971 to 2020, the dependence between two variables in probability theory is derived. The average annual air temperatures used for prognoses are collected from long-term measurements (fifty years). The design of road constructions and calculations of road construction models, which are in the system design solution (comparative calculations of asphalt pavement- and cement-concrete pavement models), we have also tested road construction materials - especially asphalt mixtures. The results were used to correct the values of input data, design criteria, as well as measures to reduce the impact of changes in climate conditions.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1109
Author(s):  
Nobuaki Kimura ◽  
Kei Ishida ◽  
Daichi Baba

Long-term climate change may strongly affect the aquatic environment in mid-latitude water resources. In particular, it can be demonstrated that temporal variations in surface water temperature in a reservoir have strong responses to air temperature. We adopted deep neural networks (DNNs) to understand the long-term relationships between air temperature and surface water temperature, because DNNs can easily deal with nonlinear data, including uncertainties, that are obtained in complicated climate and aquatic systems. In general, DNNs cannot appropriately predict unexperienced data (i.e., out-of-range training data), such as future water temperature. To improve this limitation, our idea is to introduce a transfer learning (TL) approach. The observed data were used to train a DNN-based model. Continuous data (i.e., air temperature) ranging over 150 years to pre-training to climate change, which were obtained from climate models and include a downscaling model, were used to predict past and future surface water temperatures in the reservoir. The results showed that the DNN-based model with the TL approach was able to approximately predict based on the difference between past and future air temperatures. The model suggested that the occurrences in the highest water temperature increased, and the occurrences in the lowest water temperature decreased in the future predictions.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 824
Author(s):  
Egor Dyukarev ◽  
Evgeny Zarov ◽  
Pavel Alekseychik ◽  
Jelmer Nijp ◽  
Nina Filippova ◽  
...  

The peatlands of the West Siberian Lowlands, comprising the largest pristine peatland area of the world, have not previously been covered by continuous measurement and monitoring programs. The response of peatlands to climate change occurs over several decades. This paper summarizes the results of peatland carbon balance studies collected over ten years at the Mukhrino field station (Mukhrino FS, MFS) operating in the Middle Taiga Zone of Western Siberia. A multiscale approach was applied for the investigations of peatland carbon cycling. Carbon dioxide fluxes at the local scale studied using the chamber method showed net accumulation with rates from 110, to 57.8 gC m−2 at the Sphagnum hollow site. Net CO2 fluxes at the pine-dwarf shrubs-Sphagnum ridge varied from negative (−32.1 gC m−2 in 2019) to positive (13.4 gC m−2 in 2017). The cumulative May-August net ecosystem exchange (NEE) from eddy-covariance (EC) measurements at the ecosystem scale was −202 gC m−2 in 2015, due to the impact of photosynthesis of pine trees which was not registered by the chamber method. The net annual accumulation of carbon in the live part of mosses was estimated at 24–190 gC m−2 depending on the Sphagnum moss species. Long-term carbon accumulation rates obtained by radiocarbon analysis ranged from 28.5 to 57.2 gC m−2 yr−1, with local extremes of up to 176.2 gC m−2 yr−1. The obtained estimates of various carbon fluxes using EC and chamber methods, the accounting for Sphagnum growth and decomposition, and long-term peat accumulation provided information about the functioning of the peatland ecosystems at different spatial and temporal scales. Multiscale carbon flux monitoring reveals useful new information for forecasting the response of northern peatland carbon cycles to climatic changes.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Liudmila Tripolskaja ◽  
Asta Kazlauskaite-Jadzevice ◽  
Virgilijus Baliuckas ◽  
Almantas Razukas

Ex-arable land-use change is a global issue with significant implications for climate change and impact for phytocenosis productivity and soil quality. In temperate humid grassland, we examined the impact of climate variability and changes of soil properties on 23 years of grass productivity after conversion of ex-arable soil to abandoned land (AL), unfertilized, and fertilized managed grassland (MGunfert and MGfert, respectively). This study aimed to investigate the changes between phytocenosis dry matter (DM) yield and rainfall amount in May–June and changes of organic carbon (Corg) stocks in soil. It was found that from 1995 to 2019, rainfall in May–June tended to decrease. The more resistant to rainfall variation were plants recovered in AL. The average DM yield of MGfert was 3.0 times higher compared to that in the AL. The DM yields of AL and MG were also influenced by the long-term change of soil properties. Our results showed that Corg sequestration in AL was faster (0.455 Mg ha−1 year−1) than that in MGfert (0.321 Mg ha−1 year−1). These studies will be important in Arenosol for selecting the method for transforming low-productivity arable land into MG.


2010 ◽  
Vol 278 (1712) ◽  
pp. 1661-1669 ◽  
Author(s):  
David Alonso ◽  
Menno J. Bouma ◽  
Mercedes Pascual

Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we focus instead on the recent past (1970–2003) to address whether warmer temperatures have already increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a new coupled mosquito–human model of malaria, which we use to compare projected disease levels with and without the observed temperature trend. Predicted malaria cases exhibit a highly nonlinear response to warming, with a significant increase from the 1970s to the 1990s, although typical epidemic sizes are below those observed. These findings suggest that climate change has already played an important role in the exacerbation of malaria in this region. As the observed changes in malaria are even larger than those predicted by our model, other factors previously suggested to explain all of the increase in malaria may be enhancing the impact of climate change.


2021 ◽  
Author(s):  
Moshe Gophen

AbstractPart of the Kinneret watershed, the Hula Valley, was modified from wetlands – shallow lake for agricultural cultivation. Enhancement of nutrient fluxes into Lake Kinneret was predicted. Therefore, a reclamation project was implemented and eco-tourism partly replaced agriculture. Since the mid-1980s, regional climate change has been documented. Statistical evaluation of long-term records of TP (Total Phosphorus) concentrations in headwaters and potential resources in the Hula Valley was carried out to identify efficient management design targets. Significant correlation between major headwater river discharge and TP concentration was indicated, whilst the impact of external fertilizer loads and 50,000 winter migratory cranes was probably negligible. Nevertheless, confirmed severe bdamage to agricultural crops carried out by cranes led to their maximal deportation and optimization of their feeding policy. Consequently, the continuation of the present management is recommended.


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3287 ◽  
Author(s):  
Ryan M. Huang ◽  
Oron L. Bass Jr ◽  
Stuart L. Pimm

Migratory seabirds face threats from climate change and a variety of anthropogenic disturbances. Although most seabird research has focused on the ecology of individuals at the colony, technological advances now allow researchers to track seabird movements at sea and during migration. We combined telemetry data on Onychoprion fuscatus (sooty terns) with a long-term capture-mark-recapture dataset from the Dry Tortugas National Park to map the movements at sea for this species, calculate estimates of mortality, and investigate the impact of hurricanes on a migratory seabird. Included in the latter analysis is information on the locations of recovered bands from deceased individuals wrecked by tropical storms. We present the first known map of sooty tern migration in the Atlantic Ocean. Our results indicate that the birds had minor overlaps with areas affected by the major 2010 oil spill and a major shrimp fishery. Indices of hurricane strength and occurrence are positively correlated with annual mortality and indices of numbers of wrecked birds. As climate change may lead to an increase in severity and frequency of major hurricanes, this may pose a long-term problem for this colony.


Sign in / Sign up

Export Citation Format

Share Document