Operational Earthquake Forecasting during the 2019 Ridgecrest, California, Earthquake Sequence with the UCERF3-ETAS Model

2020 ◽  
Vol 91 (3) ◽  
pp. 1567-1578 ◽  
Author(s):  
Kevin R. Milner ◽  
Edward H. Field ◽  
William H. Savran ◽  
Morgan T. Page ◽  
Thomas H. Jordan

Abstract The first Uniform California Earthquake Rupture Forecast, Version 3–epidemic-type aftershock sequence (UCERF3-ETAS) aftershock simulations were running on a high-performance computing cluster within 33 min of the 4 July 2019 M 6.4 Searles Valley earthquake. UCERF3-ETAS, an extension of the third Uniform California Earthquake Rupture Forecast (UCERF3), is the first comprehensive, fault-based, epidemic-type aftershock sequence (ETAS) model. It produces ensembles of synthetic aftershock sequences both on and off explicitly modeled UCERF3 faults to answer a key question repeatedly asked during the Ridgecrest sequence: What are the chances that the earthquake that just occurred will turn out to be the foreshock of an even bigger event? As the sequence unfolded—including one such larger event, the 5 July 2019 M 7.1 Ridgecrest earthquake almost 34 hr later—we updated the model with observed aftershocks, finite-rupture estimates, sequence-specific parameters, and alternative UCERF3-ETAS variants. Although configuring and running UCERF3-ETAS at the time of the earthquake was not fully automated, considerable effort had been focused in 2018 on improving model documentation and ease of use with a public GitHub repository, command line tools, and flexible configuration files. These efforts allowed us to quickly respond and efficiently configure new simulations as the sequence evolved. Here, we discuss lessons learned during the Ridgecrest sequence, including sensitivities of fault triggering probabilities to poorly constrained finite-rupture estimates and model assumptions, as well as implications for UCERF3-ETAS operationalization.

2021 ◽  
Author(s):  
Christian Grimm ◽  
Sebastian Hainzl ◽  
Martin Käser ◽  
Helmut Küchenhoff

Abstract Strong earthquakes cause aftershock sequences that are clustered in time according to a power decay law, and in space along their extended rupture, shaping a typically elongate pattern of aftershock locations. A widely used approach to model seismic clustering is the Epidemic Type Aftershock Sequence (ETAS) model, that shows three major biases: First, the conventional ETAS approach assumes isotropic spatial triggering, which stands in conflict with observations and geophysical arguments for strong earthquakes. Second, the spatial kernel has unlimited extent, allowing smaller events to exert disproportionate trigger potential over an unrealistically large area. Third, the ETAS model assumes complete event records and neglects inevitable short-term aftershock incompleteness as a consequence of overlapping coda waves. These three effects can substantially bias the parameter estimation and particularly lead to underestimated cluster sizes. In this article, we combine the approach of Grimm (2021), which introduced a generalized anisotropic and locally restricted spatial kernel, with the ETAS-Incomplete (ETASI) time model of Hainzl (2021), to define an ETASI space-time model with flexible spatial kernel that solves the abovementioned shortcomings. We apply different model versions to a triad of forecasting experiments of the 2019 Ridgecrest sequence, and evaluate the prediction quality with respect to cluster size, largest aftershock magnitude and spatial distribution. The new model provides the potential of more realistic simulations of on-going aftershock activity, e.g.~allowing better predictions of the probability and location of a strong, damaging aftershock, which might be beneficial for short term risk assessment and desaster response.


2019 ◽  
Vol 109 (6) ◽  
pp. 2145-2158 ◽  
Author(s):  
Andrea L. Llenos ◽  
Andrew J. Michael

Abstract Earthquake swarms, typically modeled as time‐varying changes in background seismicity, which are driven by external processes such as fluid flow or aseismic creep, present challenges for operational earthquake forecasting. Although the time decay of aftershock sequences can be estimated with the modified Omori law, it is difficult to forecast the temporal behavior of seismicity rates during a swarm. To explore these issues, we apply the epidemic‐type aftershock sequence (ETAS) model (Ogata, 1988) to the 2015 San Ramon, California swarm, which lasted several weeks and had almost 100 2≤M≤3.6 earthquakes. We develop three‐day forecasts during the swarm based on an ETAS model fit to all prior seismicity in the region as well as an ETAS model fit only to previous swarms in the region, which is better at capturing the higher background rate during the swarm. We also explore forecasts in which the background rate is updated periodically during the swarm using data over different lookback windows and find generally these models perform better than the models in which the background rate is fixed. Finally, we construct ensemble forecasts by combining the different models weighted according to their performance. The ensemble forecasts outperform all of the individual models and allow us to avoid making arbitrary choices at the outset of a swarm as to which single model will perform the best.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takao Kumazawa ◽  
Yosihiko Ogata ◽  
Hiroshi Tsuruoka

AbstractWe applied the epidemic type aftershock sequence (ETAS) model, the two-stage ETAS model and the non-stationary ETAS model to investigate the detailed features of the series of earthquake occurrences before and after the M6.7 Hokkaido Eastern Iburi earthquake on 6 September 2018, based on earthquake data from October 1997. First, after the 2003 M8.0 Tokachi-Oki earthquake, seismic activity in the Eastern Iburi region reduced relative to the ETAS model. During this period, the depth ranges of the seismicity were migrating towards shallow depths, where a swarm cluster, including a M5.1 earthquake, finally occurred in the deepest part of the range. This swarm activity was well described by the non-stationary ETAS model until the M6.7 main shock. The aftershocks of the M6.7 earthquake obeyed the ETAS model until the M5.8 largest aftershock, except for a period of several days when small, swarm-like activity was found at the southern end of the aftershock region. However, when we focus on the medium and larger aftershocks, we observed quiescence relative to the ETAS model from 8.6 days after the main shock until the M5.8 largest aftershock. For micro-earthquakes, we further studied the separated aftershock sequences in the naturally divided aftershock volumes. We found that the temporal changes in the background rate and triggering coefficient (aftershock productivity) in respective sub-volumes were in contrast with each other. In particular, relative quiescence was seen in the northern deep zones that includes the M5.8 largest aftershock. Furthermore, changes in the b-values of the whole aftershock activity showed an increasing trend with respect to the logarithm of elapsed time during the entire aftershock period, which is ultimately explained by the spatially different characteristics of the aftershocks.


2015 ◽  
Vol 57 (6) ◽  
Author(s):  
Maura Murru ◽  
Jiancang Zhuang ◽  
Rodolfo Console ◽  
Giuseppe Falcone

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p>In this paper, we compare the forecasting performance of several statistical models, which are used to describe the occurrence process of earthquakes in forecasting the short-term earthquake probabilities during the L’Aquila earthquake sequence in central Italy in 2009. These models include the Proximity to Past Earthquakes (PPE) model and two versions of the Epidemic Type Aftershock Sequence (ETAS) model. We used the information gains corresponding to the Poisson and binomial scores to evaluate the performance of these models. It is shown that both ETAS models work better than the PPE model. However, in comparing the two types of ETAS models, the one with the same fixed exponent coefficient (<span>alpha)</span> = 2.3 for both the productivity function and the scaling factor in the spatial response function (ETAS I), performs better in forecasting the active aftershock sequence than the model with different exponent coefficients (ETAS II), when the Poisson score is adopted. ETAS II performs better when a lower magnitude threshold of 2.0 and the binomial score are used. The reason is found to be that the catalog does not have an event of similar magnitude to the L’Aquila mainshock (M<sub>w</sub> 6.3) in the training period (April 16, 2005 to March 15, 2009), and the (<span>alpha)</span>-value is underestimated, thus the forecast seismicity is underestimated when the productivity function is extrapolated to high magnitudes. We also investigate the effect of the inclusion of small events in forecasting larger events. These results suggest that the training catalog used for estimating the model parameters should include earthquakes of magnitudes similar to the mainshock when forecasting seismicity during an aftershock sequence.</p></div></div></div>


2019 ◽  
Vol 219 (3) ◽  
pp. 2148-2164
Author(s):  
A M Lombardi

SUMMARY The operational earthquake forecasting (OEF) is a procedure aimed at informing communities on how seismic hazard changes with time. This can help them live with seismicity and mitigate risk of destructive earthquakes. A successful short-term prediction scheme is not yet produced, but the search for it should not be abandoned. This requires more research on seismogenetic processes and, specifically, inclusion of any information about earthquakes in models, to improve forecast of future events, at any spatio-temporal-magnitude scale. The short- and long-term forecast perspectives of earthquake occurrence followed, up to now, separate paths, involving different data and peculiar models. But actually they are not so different and have common features, being parts of the same physical process. Research on earthquake predictability can help to search for a common path in different forecast perspectives. This study aims to improve the modelling of long-term features of seismicity inside the epidemic type aftershock sequence (ETAS) model, largely used for short-term forecast and OEF procedures. Specifically, a more comprehensive estimation of background seismicity rate inside the ETAS model is attempted, by merging different types of data (seismological instrumental, historical, geological), such that information on faults and on long-term seismicity integrates instrumental data, on which the ETAS models are generally set up. The main finding is that long-term historical seismicity and geological fault data improve the pseudo-prospective forecasts of independent seismicity. The study is divided in three parts. The first consists in models formulation and parameter estimation on recent seismicity of Italy. Specifically, two versions of ETAS model are compared: a ‘standard’, previously published, formulation, only based on instrumental seismicity, and a new version, integrating different types of data for background seismicity estimation. Secondly, a pseudo-prospective test is performed on independent seismicity, both to test the reliability of formulated models and to compare them, in order to identify the best version. Finally, a prospective forecast is made, to point out differences and similarities in predicting future seismicity between two models. This study must be considered in the context of its limitations; anyway, it proves, beyond argument, the usefulness of a more sophisticated estimation of background rate, inside short-term modelling of earthquakes.


Author(s):  
G Petrillo ◽  
E Lippiello

Summary The Epidemic Type Aftershock Sequence (ETAS) model provides a good description of the post-seismic spatio-temporal clustering of seismicity and is also able to capture some features of the increase of seismic activity caused by foreshocks. Recent results, however, have shown that the number of foreshocks observed in instrumental catalogs is significantly much larger than the one predicted by the ETAS model. Here we show that it is possible to keep an epidemic description of post-seismic activity and, at the same time, to incorporate pre-seismic temporal clustering, related to foreshocks. Taking also into-account the short-term incompleteness of instrumental catalogs, we present a model which achieves very good description of the southern California seismicity both on the aftershock and on the foreshock side. Our results indicate that the existence of a preparatory phase anticipating mainshocks represents the most plausible explanation for the occurrence of foreshocks.


Author(s):  
Yue Liu ◽  
Jiancang Zhuang ◽  
Changsheng Jiang

Abstract The aftershock zone of the 1976 Ms 7.8 Tangshan, China, earthquake remains seismically active, experiencing moderate events such as the 5 December 2019 Ms 4.5 Fengnan event. It is still debated whether aftershock sequences following large earthquakes in low-seismicity continental regions can persist for several centuries. To understand the current stage of the Tangshan aftershock sequence, we analyze the sequence record and separate background seismicity from the triggering effect using a finite-source epidemic-type aftershock sequence model. Our results show that the background rate notably decreases after the mainshock. The estimated probability that the most recent 5 December 2019 Ms 4.5 Fengnan District, Tangshan, earthquake is a background event is 50.6%. This indicates that the contemporary seismicity in the Tangshan aftershock zone can be characterized as a transition from aftershock activity to background seismicity. Although the aftershock sequence is still active in the Tangshan region, it is overridden by background seismicity.


Author(s):  
Eugenio Lippiello ◽  
Cataldo Godano ◽  
Lucilla De Arcangelis

An increase of seismic activity is often observed before large earthquakes. Events responsible for this increase are usually named foreshock and their occurrence probably represents the most reliable precursory pattern. Many foreshocks statistical features can be interpreted in terms of the standard mainshock-to-aftershock triggering process and are recovered in the Epidemic Type Aftershock Sequence ETAS model. Here we present a statistical study of instrumental seismic catalogs from four different geographic regions. We focus on some common features of foreshocks in the four catalogs which cannot be reproduced by the ETAS model. In particular we find in instrumental catalogs a significantly larger number of foreshocks than the one predicted by the ETAS model. We show that this foreshock excess cannot be attributed to catalog incompleteness. We therefore propose a generalized formulation of the ETAS model, the ETAFS model, which explicitly includes foreshock occurrence. Statistical features of aftershocks and foreshocks in the ETAFS model are in very good agreement with instrumental results.


2021 ◽  
Author(s):  
Ester Manganiello ◽  
Marcus Herrmann ◽  
Warner Marzocchi

&lt;p&gt;The ability to forecast large earthquakes on short time scales is strongly limited by our understanding of the earthquake nucleation process. Foreshocks represent promising seismic signals that may improve earthquake forecasting as they precede many large earthquakes. However, foreshocks can currently only be identified as such after a large earthquake occurred. This inability is because it remains unclear whether foreshocks represent a different physical process than general seismicity (i.e., mainshocks and aftershocks). Several studies compared foreshock occurrence in real and synthetic catalogs, as simulated with a well-established earthquake triggering/forecasting model called Epidemic-Type Aftershock Sequence (ETAS) that does not discriminate between foreshocks, mainshocks, and aftershocks. Some of these studies show that the spatial distribution of foreshocks encodes information about the subsequent mainshock magnitude and that foreshock activity is significantly higher than predicted by the ETAS model. These findings attribute a unique underlying physical process to foreshocks, making them potentially useful for forecasting large earthquakes. We reinvestigate these scientific questions using high-quality earthquake catalogs and study carefully the influence of subjective parameter choices and catalog artifacts on the results. For instance, we use data from different regions, account for the short-term catalog incompleteness and its spatial variability, and explore different criteria for sequence selection and foreshock definition.&lt;/p&gt;


2006 ◽  
Vol 6 (6) ◽  
pp. 895-901 ◽  
Author(s):  
G. A. Papadopoulos ◽  
I. Latoussakis ◽  
E. Daskalaki ◽  
G. Diakogianni ◽  
A. Fokaefs ◽  
...  

Abstract. The seismic sequence of October–November 2005 in the Samos area, East Aegean Sea, was studied with the aim to show how it is possible to establish criteria for (a) the rapid recognition of both the ongoing foreshock activity and the mainshock, and (b) the rapid discrimination between the foreshock and aftershock phases of activity. It has been shown that before the mainshock of 20 October 2005, foreshock activity is not recognizable in the standard earthquake catalogue. However, a detailed examination of the records in the SMG station, which is the closest to the activated area, revealed that hundreds of small shocks not listed in the standard catalogue were recorded in the time interval from 12 October 2005 up to 21 November 2005. The production of reliable relations between seismic signal duration and duration magnitude for earthquakes included in the standard catalogue, made it possible to use signal durations in SMG records and to determine duration magnitudes for 2054 small shocks not included in the standard catalogue. In this way a new catalogue with magnitude determination for 3027 events was obtained while the standard catalogue contains 1025 events. At least 55 of them occurred from 12 October 2005 up to the occurrence of the two strong foreshocks of 17 October 2005. This implies that foreshock activity developed a few days before the strong shocks of 17 October 2005 but it escaped recognition by the routine procedure of seismic analysis. The onset of the foreshock phase of activity is recognizable by the significant increase of the mean seismicity rate which increased exponentially with time. According to the least-squares approach the b-value of the magnitude-frequency relation dropped significantly during the foreshock activity with respect to the b-value prevailing in the declustered background seismicity. However, the maximum likelihood approach does not indicate such a drop of b. The b-value found for the aftershocks that followed the strong shock of 20 October 2005 is significantly higher than in foreshocks. The significant aftershock-foreshock difference in b-value is valid not only if the entire aftershock sequence is considered but also if only the segment of aftershocks that occurred within the first 24-h or the first 48-h after the mainshock of 20 October 2005 are taken into account. This difference in b-value should be examined further in other foreshock-aftershock sequences because it could be used as a diagnostic of the mainshock occurrence within a few hours after its generation.


Sign in / Sign up

Export Citation Format

Share Document