Magnitude Estimation for Earthquake Early Warning with Multiple Parameter Inputs and a Support Vector Machine
Abstract Accurately estimating the magnitude within the initial seconds after the P-wave arrival is of great significance in earthquake early warning (EEW). Over the past few decades, single-parameter approaches such as the τc and Pd methods have been applied to EEW magnitude estimation studies considering the first 3 s after the P-wave onset. However, these methods present considerable scatter and are affected by the signal-to-noise ratio (SNR) and epicentral distance. In this study, using Japanese K-NET strong-motion data, we propose a machine-learning method comprising multiple parameter inputs, namely, the support vector machine magnitude estimation (SVM-M) model, to determine earthquake magnitudes and resolve the aforementioned problems. Our results using a single seismological station record show that the standard deviation of the magnitude prediction errors of the SVM-M model is 0.297, which is less than those of the τc (1.637) and Pd (0.425) methods. The magnitudes estimated by the SVM-M model within 3 s after the P-wave arrival are not obviously affected by the SNR or epicentral distance, and not overestimated for MJMA≤5. In addition, in an offline EEW application, the magnitude estimation error of the SVM-M model gradually decreases with increasing time after the first station is triggered, and the underestimation of event magnitudes for 6.5≤MJMA gradually improves. These results demonstrate that the proposed SVM-M model can robustly estimate earthquake magnitudes and has potential for EEW.