Effect of structure geometry on strong ground motions: The Duwamish River Valley, Seattle, Washington

1983 ◽  
Vol 73 (6A) ◽  
pp. 1851-1863
Author(s):  
Charles A. Langston ◽  
Jia-Ju Lee

Abstract A three-dimensional ray tracing algorithm is used to compute the high frequency response of an SH plane wave incident under several models of the sediment filled with Duwamish River Valley of central Seattle. Models are based on valley geometry previously determined using borehole logs. The SH-wave response is considered in an effort to simulate the S-wave radiation from the 1965 magnitude 6.5 Puget Sound earthquake. Although the structure models considered are two-dimensional, three-dimensional ray tracing is needed to treat incident SH waves of various incidence angles and azimuths of approach appropriate for the USCGS and ISC hypocenters of the 1965 event. Generally, amplification of the direct SH wave due to the curved basin geometry is comparable to an equivalent elastic layer over a half-space model. However, for points near the center of the valley, multiple S rays become focused after undergoing several reflections from the curved lower boundary of the valley fill. This produces an order of magnitude increase in effective amplification. A detailed study of these rays shows that significant amplitudes occur over narrow distance ranges (∼200 m) at the surface and that they are sensitive to moderate changes in incident wave direction. Focusing effects of this type were probably an important factor in damage caused by the 1965 earthquake, especially over the thicker portions of the Duwamish River Valley. Effects of “randomly” focused rays also give an explanation for the apparently capricious nature of strong ground shaking in the Puget Sound area.

1984 ◽  
Vol 106 (4) ◽  
pp. 390-398 ◽  
Author(s):  
J. R. Koseff ◽  
R. L. Street

A synthesis of observations of flow in a three-dimensional lid-driven cavity is presented through the use of flow visualization pictures and velocity and heat flux measurements. The ratio of the cavity depth to width used was 1:1 and the span to width ratio was 3:1. Flow visualization was accomplished using the thymol blue technique and by rheoscopic liquid illuminated by laser-light sheets. Velocity measurements were made using a two-component laser-Doppler-anemometer and the heat flux on the lower boundary of the cavity was measured using flush mounted sensors. The flow is three-dimensional and is weaker at the symmetry plane than that predicted by accurate two-dimensional numerical simulations. Local three-dimensional features, such as corner vortices in the end-wall regions and longitudinal Taylor-Go¨rtler-like vortices, are significant influences on the flow. The flow is unsteady in the region of the downstream secondary eddy at higher Reynolds numbers (Re) and exhibits turbulent characteristics in this region at Re = 10,000.


GPS Solutions ◽  
2013 ◽  
Vol 18 (3) ◽  
pp. 345-354 ◽  
Author(s):  
Landon Urquhart ◽  
Felipe G. Nievinski ◽  
Marcelo C. Santos

2006 ◽  
Vol 128 (9) ◽  
pp. 945-952 ◽  
Author(s):  
Sandip Mazumder

Two different algorithms to accelerate ray tracing in surface-to-surface radiation Monte Carlo calculations are investigated. The first algorithm is the well-known binary spatial partitioning (BSP) algorithm, which recursively bisects the computational domain into a set of hierarchically linked boxes that are then made use of to narrow down the number of ray-surface intersection calculations. The second algorithm is the volume-by-volume advancement (VVA) algorithm. This algorithm is new and employs the volumetric mesh to advance the ray through the computational domain until a legitimate intersection point is found. The algorithms are tested for two classical problems, namely an open box, and a box in a box, in both two-dimensional (2D) and three-dimensional (3D) geometries with various mesh sizes. Both algorithms are found to result in orders of magnitude gains in computational efficiency over direct calculations that do not employ any acceleration strategy. For three-dimensional geometries, the VVA algorithm is found to be clearly superior to BSP, particularly for cases with obstructions within the computational domain. For two-dimensional geometries, the VVA algorithm is found to be superior to the BSP algorithm only when obstructions are present and are densely packed.


1995 ◽  
Vol 85 (6) ◽  
pp. 1821-1834
Author(s):  
Toshimi Satoh ◽  
Toshiaki Sato ◽  
Hiroshi Kawase

Abstract We evaluate the nonlinear behavior of soil sediments during strong ground shaking based on the identification of their S-wave velocities and damping factors for both the weak and strong motions observed on the surface and in a borehole at Kuno in the Ashigara Valley, Japan. First we calculate spectral ratios between the surface station KS2 and the borehole station KD2 at 97.6 m below the surface for the main part of weak and strong motions. The predominant period for the strong motion is apparently longer than those for the weak motions. This fact suggests the nonlinearity of soil during the strong ground shaking. To quantify the nonlinear behavior of soil sediments, we identify their S-wave velocities and damping factors by minimizing the residual between the observed spectral ratio and the theoretical amplification factor calculated from the one-dimensional wave propagation theory. The S-wave velocity and the damping factor h (≈(2Q)−1) of the surface alluvial layer identified from the main part of the strong motion are about 10% smaller and 50% greater, respectively, than those identified from weak motions. The relationships between the effective shear strain (=65% of the maximum shear strain) calculated from the one-dimensional wave propagation theory and the shear modulus reduction ratios or the damping factors estimated by the identification method agree well with the laboratory test results. We also confirm that the soil model identified from a weak motion overestimates the observed strong motion at KS2, while that identified from the strong motion reproduces the observed. Thus, we conclude that the main part of the strong motion, whose maximum acceleration at KS2 is 220 cm/sec2 and whose duration is 3 sec, has the potential of making the surface soil nonlinear at an effective shear strain on the order of 0.1%. The S-wave velocity in the surface alluvial layer identified from the part just after the main part of the strong motion is close to that identified from weak motions. This result suggests that the shear modulus recovers quickly as the shear strain level decreases.


1966 ◽  
Vol 56 (4) ◽  
pp. 925-936 ◽  
Author(s):  
I. N. Gupta

abstract The reciprocity theorem is used to obtain Rayleigh wave radiation patterns from sources on the surface of or within an elastic semi-infinite medium. Nine elementary line sources first considered are: horizontal and vertical forces, horizontal and vertical double forces without moment, horizontal and vertical single couples, center of dilatation (two dimensional case), center of rotation, and double couple without moment. The results are extended to the three dimensional case of similar point sources in a homogeneous half space. Haskell's results for the radiation patterns of Rayleigh waves from a fault of arbitrary dip and direction of motion are reproduced in a much simpler manner. Numerical results on the effect of the depth of these sources on the Rayleigh wave amplitudes are shown for a solid having Poisson's ratio of 0.25.


2018 ◽  
Vol 18 (6) ◽  
pp. 1665-1679
Author(s):  
Stephanie Lackner

Abstract. Earthquake impact is an inherently interdisciplinary topic that receives attention from many disciplines. The natural hazard of strong ground motion is the reason why earthquakes are of interest to more than just seismologists. However, earthquake shaking data often receive too little attention by the general public and impact research in the social sciences. The vocabulary used to discuss earthquakes has mostly evolved within and for the discipline of seismology. Discussions on earthquakes outside of seismology thus often use suboptimal concepts that are not of primary concern. This study provides new theoretic concepts as well as novel quantitative data analysis based on shaking data. A dataset of relevant global earthquake ground shaking from 1960 to 2016 based on USGS ShakeMap data has been constructed and applied to the determination of past ground shaking worldwide. Two new definitions of earthquake location (the shaking center and the shaking centroid) based on ground motion parameters are introduced and compared to the epicenter. These definitions are intended to facilitate a translation of the concept of earthquake location from a seismology context to a geographic context. Furthermore, the first global quantitative analysis on the size of the area that is on average exposed to strong ground motion – measured by peak ground acceleration (PGA) – is provided.


2014 ◽  
Vol 711 ◽  
pp. 546-549
Author(s):  
Wei Lin ◽  
Wei Hwa Chiang

Taipei Top Church Auditorium is a hall primarily intended for praise and worship. A three dimensional ray tracing computer simulation was used to provide sound energy distribution on the audience area of the hall, realistic design have been performed. The volume of the hall is 24600m3, which is occupied for 2200 people and equipped the hall with acoustical curtains by modifying its acoustical characteristics. Objective measurements of impulse response are reported, and background noise control and noise isolation are also be considered in the design phase. Reinforcement system is conducted to meet all the activity for the acoustical environments.


Sign in / Sign up

Export Citation Format

Share Document