Estimation Theory for Peak Ground Motion

1990 ◽  
Vol 61 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Gwo-Bin Ou ◽  
Robert B. Herrmann

Abstract The application of estimation theory for predicting peak ground motion is critically examined in order to be more precise in its application. Estimation theory relates peak ground motion to the duration and spectrum of the signal. Using vertical component data from the Eastern Canada Telemetered Network, at distance range of 100–1000 km, we find that a duration must be defined by the interval where the cumulative energy of the main signal increases linearly, here between 5% and 75% of the cumulative power. This duration, when used with the spectra within this window, adequately replicates observed peak motions. This duration used differs significantly from that used by Herrmann (1985) and Toro and McGuire (1987) beyond 500 km. The estimation theory is extended to estimate confidence limits on the peak motion. Finally, the relation between various spectral level estimators, linear, logarithmic, and RMS, is considered to point out the need for consistency in spectral level estimation using smooth models.

2020 ◽  
Vol 110 (2) ◽  
pp. 471-488 ◽  
Author(s):  
Samantha M. Palmer ◽  
Gail M. Atkinson

ABSTRACT Spectral decay of ground-motion amplitudes at high frequencies is primarily influenced by two parameters: site-related kappa (κ0) and regional Q (quality factor, inversely proportional to anelastic attenuation). We examine kappa and apparent Q-values (Qa) for M≥3.5 earthquakes recorded at seismograph stations on rock sites in eastern and western Canada. Our database contains 20 earthquakes recorded on nine stations in eastern Canada and 404 earthquakes recorded on eight stations in western Canada, resulting in 105 and 865 Fourier amplitude spectra, respectively. We apply two different methods: (1) a modified version of the classical S-wave acceleration method; and (2) a new stacking method that is consistent with the use of kappa in ground-motion modeling. The results are robust with respect to the method used and also with respect to the frequency band selected, which ranges from 9 to 38 Hz depending on the region, event, and method. Kappa values obtained from the classical method are consistent with those of the stacked method, but the stacked method provides a lower uncertainty. A general observation is that kappa is usually larger, and apparent Q is smaller, for the horizontal component in comparison to the vertical component. We determine an average regional κ0=7  ms (horizontal) and 0 ms (vertical) for rock sites in eastern Canada; we obtain κ0=19  ms (horizontal) and 14 ms (vertical) for rock sites in western Canada. We note that kappa measurements are quite sensitive to details of data selection criteria and methodology, and may be significantly influenced by site effects, resulting in large site-to-site variability.


2015 ◽  
Vol 31 (3) ◽  
pp. 1629-1645 ◽  
Author(s):  
Ronnie Kamai ◽  
Norman Abrahamson

We evaluate how much of the fling effect is removed from the NGA database and accompanying GMPEs due to standard strong motion processing. The analysis uses a large set of finite-fault simulations, processed with four different high-pass filter corners, representing the distribution within the PEER ground motion database. The effects of processing on the average horizontal component, the vertical component, and peak ground motion values are evaluated by taking the ratio between unprocessed and processed values. The results show that PGA, PGV, and other spectral values are not significantly affected by processing, partly thanks to the maximum period constraint used when developing the NGA GMPEs, but that the bias in peak ground displacement should not be ignored.


2012 ◽  
Vol 15 (8) ◽  
pp. 1439-1453 ◽  
Author(s):  
Behrouz Asgarian ◽  
Anahita Norouzi ◽  
Pejman Alanjari ◽  
Masoud Mirtaheri

2020 ◽  
Vol 47 (7) ◽  
pp. 790-800 ◽  
Author(s):  
Hadi Aryan ◽  
Mehdi Ghassemieh

Field evidence of recent earthquakes shows serious bridge damages due to the direct compression or tension in the columns and some flexural and shear failures caused by the variation in axial force of the columns. These damages could not be produced solely by the horizontal seismic excitations; the vertical component of the earthquake is involved. This paper presents a numerical study highlighting the presence of vertical seismic excitation. Nonlinear time history analyses are conducted on detailed three-dimensional models of multi-span simply supported and multi-span continuous bridges using a suite of representative ground motions. The results showed the significant influence of vertical excitation on the bridge responses. Therefore, it is imperative to include more efficient criteria to upgrade the design codes and extend practical techniques that consider and cope with the structural effects of vertical ground motion along with the horizontal excitations.


2020 ◽  
Vol 59 (5) ◽  
pp. 3827-3845
Author(s):  
Fikrat ALMahdi ◽  
Yasin Fahjan ◽  
Adem Dogˇangün

2020 ◽  
Vol 110 (5) ◽  
pp. 2530-2540 ◽  
Author(s):  
Adam T. Ringler ◽  
Robert E. Anthony ◽  
David C. Wilson ◽  
Abram C. Claycomb ◽  
John Spritzer

ABSTRACT Seismometers are highly sensitive instruments to not only ground motion but also many other nonseismic noise sources (e.g., temperature, pressure, and magnetic field variations). We show that the Alaska component of the Transportable Array is particularly susceptible to recording magnetic storms and other space weather events because the sensors used in this network are unshielded and magnetic flux variations are stronger at higher latitudes. We also show that vertical-component seismic records across Alaska are directly recording magnetic field variations between 40 and 800 s period as opposed to actual ground motion during geomagnetic events with sensitivities ranging from 0.004 to 0.48  (m/s2)/T. These sensitivities were found on a day where the root mean square variation in the magnetic field was 225 nT. Using a method developed by Forbriger (2007, his section 3.1), we show that improving vertical seismic resolution of an unshielded sensor by as much as 10 dB in the 100–400 s period band using magnetic data from a collocated three-component magnetometer is possible. However, due to large spatial variations in Earth’s magnetic field, this methodology becomes increasingly ineffective as the distance between the seismometer and magnetometer increases (no more than 200 km separation). A potential solution to this issue may be to incorporate relatively low-cost magnetometers as an additional environmental data stream at high-latitude seismic stations. We demonstrate that the Bartington Mag-690 sensors currently deployed at Global Seismographic Network sites are not only acceptable for performing corrections to seismic data, but are also capable of recording many magnetic field signals with similar signal-to-noise ratios, in the 20–1000 s period band, as the observatory grade magnetometers operated by the U.S. Geological Survey Geomagnetism Program. This approach would densify magnetic field observations and could also contribute to space weather monitoring by supplementing highly calibrated magnetometers with additional sensors.


Sign in / Sign up

Export Citation Format

Share Document