scholarly journals MULTIPLE PERFORMANCE OPTIMIZATION OF MACHINING PARAMETERS OF DRILLING HYBRID MICA COMPOSITES USING TAGUCHI BASED GREY RELATIONAL ANALYSIS

2012 ◽  
Vol 6 (2) ◽  
pp. 17-28 ◽  
Author(s):  
Rajmohan T ◽  
Palanikumar K ◽  
Prakash S ◽  
LILLY MERCY J
2015 ◽  
Vol 813-814 ◽  
pp. 357-361
Author(s):  
T. Rajmohan ◽  
Gopi Krishna ◽  
Ankit Kumar Singh ◽  
A.P.V. Swamy Naidu

In this investigation, a new approach is based on Grey Relational Analysis and Taguchi method to optimize the machining parameters with multi performance characteristics in WEDM of 304L SS. Experiments are conducted using Taguchi Quality Concept, L9,3-level orthogonal array was chosen for experiments .The WEDM parameters namely pulse-on time (TON), pulse-off time (TOFF), and wire feed (WF) on material removal rate (MRR) .The Grey Relational Analysis with multiple performance characteristics indicates that the pulse-on time (TON), pulse-off time (TOFF) are the most significant factors . The optimum machining parameters have been identified by Grey relational analysis and significant contribution of parameters can be determined by analysis of variance (ANOVA). The confirmation test is also conducted to validate the test result. The results from this study will be useful for manufacturing engineers to select appropriate WEDM process parameters to machine 304L Stainless Steel.


Author(s):  
S. Dinesh ◽  
K. Rajaguru ◽  
K. Saravanan ◽  
R. Yokeswaran ◽  
V. Vijayan

Automotive shafts require maximum strength with regard to axial, bending and torsional loading to transmit power to various parts of a vehicle. Hence, it is very critical to analyse the manufacturing process and its governing parameters to exercise control over the surface properties of the shaft as it needs to be precisely manufactured in terms of dimensions and the surface roughness. The effect of three input parameters over two responses are considered as two major criteria's for production of shaft. The input parameters are speed, feed and depth of cut whereas the responses are material removal rate and surface roughness. Central Composite design was used and experimental results were analysed with Response Surface Methodology. ANOVA analysis was carried out to identify the most contributing parameter for MRR and SR. Grey Relational Analysis was adopted to identify the most feasible combination of machining parameters for turning process. The optimized parameter is identified as speed of 1000 rpm, 0.15 mm of feed and 0.35 mm of depth of cut using Grey Relational Analysis.


Sign in / Sign up

Export Citation Format

Share Document