scholarly journals New Kinetic Spectrophotometric Method for Determination of Folic Acid in Pharmaceutical Formulations

Author(s):  
Mouhammed Khateeb ◽  
Basheer Elias ◽  
Fatema Al Rahal

A simple and sensitive kinetic spectrophotometric method has been developed for the determination of folic acid (FA) in bulk and pharmaceutical Formulations. The method is based on the oxidation of FA by Fe (III) in sulfuric acid medium. Fe (III) subsequently reduces to Fe (II) which is coupled with potassium ferricyanide to form Prussian blue. The reaction is followed spectrophotometrically by measuring the increase in absorbance at λmax 725 nm. The rate data and fixed time methods were adopted for constructing the calibration curves. The linearity range was found to be 1–20 μg mL-1 for each method. The correlation coefficient was 0.9978 and 0.9993, and LOD was found to be 0.91 and 0.09 μg mL-1 for rate data and fixed time methods, respectively. The proposed method has been successfully applied to the determination of FA in formulations with no interference from the excipients. Statical comparison of the results shows that there is no significant difference between the proposed and pharmacopoeial methods

Author(s):  
Mouhammed Khateeb ◽  
Bashir Elias ◽  
Shahama Adi

A new, simple and sensitive kinetic spectrophotometric method has been proposed for the determination of captopril (CPT) in pharmaceutical formulations. The method is based on oxidation of 3-methyl-2-benzothiazolinone hydrazone hydrochloride monohydrate (MBTH) by ferric chloride followed by its coupling with the drug to form green-yellow colored product with absorbance maximum at 395nm. The concentration of CPT was calculated using the calibration equation for the rate data and fixed time methods. The linearity range was found to be 0.5–22.5 μg mL-1for each method. The correlation coefficients were 0.9994 and 0.9971 for rate data and fixed time methods respectively. The proposed methods were applied successfully for the determination of CPT in pharmaceutical formulations. Statistical comparison of the results shows that there is no significant difference between the proposed and official methods.


2006 ◽  
Vol 71 (10) ◽  
pp. 1107-1120 ◽  
Author(s):  
Nafisur Rahman ◽  
Zehra Bano ◽  
Hejaz Azmi ◽  
Mohammad Kashif

Asimple kinetic spectrophotometric method has been developed for the determination of lansoprazole in pharmaceutical formulations. The method is based on the oxidation of the drug with alkaline potassium permanganate at room temperature. The reaction was followed spectrophotometrically by measuring the increase in the absorbance owing to the formation of MnO 42? at 610 nm (Method A) and the decrease in the absorbance at 530 nm due to the disapperance of MnO4? (Method B). Calibration procedures were adopted for the assay of the drug. The calibration curves were linear over the concentration ranges of 5-150 and 5-70?g ml-1, with the corresponding calibration Equations: rate = -3.915x10-6 + 5.271x10-5 c and ?A = 1.04x 10-3 + 1.78x10-3 c for methods A, and B, respectively. A statistical comparison of the results of the proposed procedures with those of the reference spectrophotometric method show excellent agreement and indicated no significant difference between the compared methods in terms of accuracy and precision. Interval hypothesis tests were also performed, which indicated that the true bias of all samples was less than ? 2 %. .


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammed G. Abdel Wahed ◽  
Ragaa El Sheikh ◽  
Ayman A. Gouda ◽  
Sayed Abou Taleb

Simple, sensitive, and accurate kinetic spectrophotometric method was proposed for the determination of gemifloxacin mesylate (GMF) and moxifloxacin hydrochloride (MOX) in pure forms and pharmaceutical preparations (tablets). The method is based on coupling the studied drugs with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in the presence of alkaline borate buffer. Spectrophotometric measurement was achieved by recording the absorbance at 466 and 464 nm for GMF and MOX, respectively, after a fixed time of 20 and 15 min on a water bath adjusted at 70 ± 5°C for both drugs. The different experimental parameters affecting the development and stability of the color were carefully studied and optimized. The absorbance-concentration plots were linear over the ranges 0.5–8.0 and 2.0–12 μg mL−1for GMF and MOX, respectively. The limit of detection of the kinetic method was about 0.12 (2.47 × 10−7 M) and 0.36 (8.22 × 10−7 M) μg mL−1for GMF and MOX, respectively. The proposed methods have been applied and validated successfully with percentage relative standard deviation (RSD% ≤ 0.52) as precision and percentage relative error (RE% ≤ 1.33) as accuracy. The robustness of the proposed method was examined with recovery values that were 97.5–100.5 ± 1.3–1.9%. Statistical comparison of the results with the reference spectrophotometric methods shows excellent agreement and indicates no significant difference in accuracy or precision.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Mahmoud A. Omar ◽  
Osama H. Abdelmageed ◽  
Tamer Z. Attia

A simple, reliable, and sensitive kinetic spectrophotometric method was developed for determination of eight cephalosporin antibiotics, namely, Cefotaxime sodium, Cephapirin sodium, Cephradine dihydrate, Cephalexin monohydrate, Ceftazidime pentahydrate, Cefazoline sodium, Ceftriaxone sodium, and Cefuroxime sodium. The method depends on oxidation of each of studied drugs with alkaline potassium permanganate. The reaction is followed spectrophotometrically by measuring the rate of change of absorbance at 610 nm. The initial rate and fixed time (at 3 minutes) methods are utilized for construction of calibration graphs to determine the concentration of the studied drugs. The calibration graphs are linear in the concentration ranges 5–15 g  and 5–25 g  using the initial rate and fixed time methods, respectively. The results are validated statistically and checked through recovery studies. The method has been successfully applied for the determination of the studied cephalosporins in commercial dosage forms. Statistical comparisons of the results with the reference methods show the excellent agreement and indicate no significant difference in accuracy and precision.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Safwan Ashour ◽  
Mouhammed Khateeb

A simple and sensitive kinetic spectrophotometric method was developed for the determination of fexofenadine hydrochloride in bulk and pharmaceutical preparations. The method is based on a kinetic investigation of the oxidation reaction of fexofenadine using alkaline potassium permanganate as an oxidizing agent at room temperature. The reaction is followed spectrophotometrically by measuring the increase of absorbance owing to the formation of manganate ion at 610 nm. The initial rate and fixed time (at 15 min) methods are utilized for construction of calibration graphs. All the reaction conditions for the proposed method have been studied. The linearity range was found to be 2.5–50.0 μg mL−1 with detection limit of 0.055 μg mL−1 for both initial rate and fixed time methods. The proposed method was applied successfully for the determination of fexofenadine in pharmaceutical formulations; the percentage recoveries were 99.98–101.96%. The results obtained were compared statistically with those obtained by the official method and showed no significant differences regarding accuracy and precision.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Patrícia Vidal de Aléssio ◽  
Ana Carolina Kogawa ◽  
Hérida Regina Nunes Salgado

Ceftriaxone sodium, an antimicrobial agent that plays an important role in clinical practice, is successfully used to treat infections caused by most Gram-positive and Gram-negative organisms. Since there are few rapid analytical methods for ceftriaxone analysis to use in the pharmaceutical routine, the aim of this research was to develop a new method able to quantify this cephalosporin. Therefore, a sensitive, rapid, simple UV spectrophotometric method for the determination and quantification of ceftriaxone sodium was proposed. The UV detector was set at 241 nm. Beer’s law obeyed the concentration range of 10–20 µg mL−1. Statistical comparison of the results with a well-established reported method showed excellent agreement and proved that there is no significant difference in the accuracy and precision. Intra- and interday variability for the method were less than 2% relative standard deviation. The proposed method was applied to the determination of the examined drugs in pharmaceutical formulations and the results demonstrated that the method is equally accurate, precise, and reproducible as the official methods.


Author(s):  
Rupal Yadav ◽  
Indresh Kumar ◽  
Radhey Naik

An effective and fairly inexpensive spectrophotometric method for trace determination of isoniazid INH in pure form as well as in pharmaceutical formulations has been developed through ligand substitution reaction between INH and aquapentacyanoruthenate (II) ion ([Ru(CN)5OH2]3-) in aqueous medium at ?max = 502 nm. The fixed time procedure has been employed under optimum reaction conditions. The calibration equations, relating absorbance measured at 502 nm at fixed times (tn = 2, 5 and 7 min) and cINH in linear range (1.37 - 27.43) ?g mL-1, were used for trace determination of INH has been reported in the present investigation which are in agreement with official and reported methods. The percentage recovery has been calculated and found to be within the range of (99 - 101 %) in the analysis of different pharmaceutical samples. The results reveal that the use of common recipients as additives do not produce any type of interference in proposed method. The validity of the proposed method was also checked by statistical analysis which agreed with the results obtained using official method. The present method is very simple, reproducible, sensitive and it can be adopted for trace determination of INH in different samples without using extracting agent.


2017 ◽  
Vol 56 (4) ◽  
Author(s):  
Lalit Kishore ◽  
Ashok Kumar ◽  
Anroop Nair ◽  
Navpreet Kaur

The objective of the current study was to develop a direct, sensitive spectrophotometric method based on the oxidation of Ofloxacin using potassium permanganate in alkaline medium. The rate of change of absorbance was measured at 603 nm. The initial rate method and fixed time method (at 4 min) are utilised to construct calibration graphs for calculating the concentration of the drug. The results were validated through inter day and intraday precision assays according to the ICH guidelines and also through recovery studies. Statistical comparison of the proposed methods with that of reference method shows excellent agreement and indicates no significant difference in their accuracy and precision.


2010 ◽  
Vol 7 (4) ◽  
pp. 1612-1620 ◽  
Author(s):  
M. Keyvanfard ◽  
N. Abedi

A new, simple, sensitive and selective kinetic spectrophotometric method was developed for the determination of ultra trace amounts of vanadium(V). The method is based on the catalytic effect of vanadium(V) on the oxidation of malachite green oxalate (MG) by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in the absorbance of malachite green oxalate (MG) at 625 nm with a fixed-time method. The decrease in the absorbance of MG is proportional to the concentration of vanadium(V) in the range of 1-100 ng/mL with a fixed time of 0.5-2 min from the initiation of the reaction. The limit of detection is 0.71 ng/mL of vanadium(V). The relative standard deviation for the determination of 5, 30, 50 ng/mL of vanadium(V) was2.5% 2.6%, 2.4% and respectively. The method was applied to the determination of vanadium(V) in water samples.


Sign in / Sign up

Export Citation Format

Share Document