scholarly journals A climatic study of an urban green space: the Gulbenkian Park in Lisbon (Portugal)

Finisterra ◽  
2012 ◽  
Vol 42 (84) ◽  
Author(s):  
Henrique Andrade ◽  
Rute Vieira

Measurements of various climatic parameters were carried out in an average-sized green space in the centre of Lisbon (the Fundação Calouste Gulbenkian Park). The aims consisted of assessing the thermal differentiation between the park and the surrounding built-up area and analysing the microclimatic patterns within the park itself. The main results demonstrate that the park is cooler than the built-up area in all the seasons and both during the daytime and at night, but especially so in the daytime during the summer. The most significant microclimatic contrasts were found to occur with respect to solar radiation and mean radiant temperature, with consequences upon the level of thermal comfort. The structure of the vegetation was also found to have a significant microclimatic influence, since the reduction in the level of incident solar radiation brought on by the presence of groups of trees was much larger than that associated with isolated trees.

2021 ◽  
Vol 6 (1) ◽  
pp. 5-19 ◽  
Author(s):  
Sabrina Erlwein ◽  
Stephan Pauleit

Urban green spaces reduce elevated urban temperature through evaporative cooling and shading and are thus promoted as nature-based solutions to enhance urban climates. However, in growing cities, the supply of urban green space often conflicts with increasing housing demand. This study investigates the interplay of densification and the availability of green space and its impact on human heat stress in summer. For the case of an open-midrise (local climate zone 5) urban redevelopment site in Munich, eight densification scenarios were elaborated with city planners and evaluated by microscale simulations in ENVI-met. The chosen scenarios consider varying building heights, different types of densification, amount of vegetation and parking space regulations. The preservation of existing trees has the greatest impact on the physical equivalent temperature (PET). Construction of underground car parking results in the removal of the tree population. Loss of all the existing trees due to parking space consumption leads to an average daytime PET increase of 5°C compared to the current situation. If the parking space requirement is halved, the increase in PET can be reduced to 1.3°C–1.7°C in all scenarios. The addition of buildings leads to a higher gain in living space than the addition of floors, but night-time thermal comfort is affected by poor ventilation if fresh air circulation is blocked. The protection of mature trees in urban redevelopment strategies will become more relevant in the changing climate. Alternative mobility strategies could help to reduce trade-offs between densification and urban greening.<p>Urban green spaces reduce outdoor temperatures through evaporative cooling and shading and are thus promoted as nature based solutions to enhance urban climates. However, in growing cities, supply of urban green space often conflicts with increasing housing demand. This study investigates the interplay of densification and availability of green and its impact on outdoor human thermal comfort. For the case of an open-midrise (LCZ 5) urban redevelopment site in Munich, eight densification scenarios were elaborated with city planners and evaluated by microclimate modelling in ENVI-met. The chosen scenarios consider varying building heights, different types of densification, vegetation amount and parking space regulations. The greatest impact on physical equivalent temperature (PET) has the preservation of existing trees. Construction of underground car parking results in the removal of the tree population. Loss of all existing trees due to parking space consumption leads to an average daytime increase of 5 °C PET compared to the current situation. If the parking space requirement is halved, the increase in PET can be reduced to 1.3 to 1.7 °C in all scenarios. Adding buildings leads to a higher gain in living space than adding floors, yet night time thermal comfort is affected by poor ventilation if fresh air circulation is blocked. Protecting mature trees in urban redevelopment strategies will gain more relevance in changing climate. Alternative mobility strategies can help to reduce trade-offs between mobility, densification and microclimate.</p>


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 813
Author(s):  
Hui Dang ◽  
Jing Li ◽  
Yumeng Zhang ◽  
Zixiang Zhou

Urban green spaces can provide many types of ecosystem services for residents. An imbalance in the pattern of green spaces leads to an inequality of the benefits of such spaces. Given the current situation of environmental problems and the basic geographical conditions of Xi’an City, this study evaluated and mapped four kinds of ecosystem services from the perspective of equity: biodiversity, carbon sequestration, air purification, and climate regulation. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) was used to obtain the partition groups of ecosystem services. The results indicate that first, the complexity of the urban green space community is low, and the level of biodiversity needs to be improved. The dry deposition flux of particulate matter (PM2.5) decreases from north to south, and green spaces enhance the adsorption of PM2.5. Carbon sequestration in the south and east is higher than that in the north and west, respectively. The average surface temperature in green spaces is lower than that in other urban areas. Second, urban green space resources in the study area are unevenly distributed. Therefore, ecosystem services in different areas are inequitable. Finally, based on the regionalization of integrated ecosystem services, an ecosystem services cluster was developed. This included 913 grid spaces, 12 partitions, and 5 clusters, which can provide a reference for distinct levels of ecosystem services management. This can assist urban managers who can use these indicators of ecosystem service levels for planning and guiding the overall development pattern of green spaces. The benefits would be a maximization of the ecological functions of green spaces, an improvement of the sustainable development of the city, and an improvement of people’s well-being.


2021 ◽  
Author(s):  
Konrad Uebel ◽  
Melissa Marselle ◽  
Angela J. Dean ◽  
Jonathan R. Rhodes ◽  
Aletta Bonn

Sign in / Sign up

Export Citation Format

Share Document