Methionine protects from myocardial ischemia/reperfusion injury

2014 ◽  
Vol 2 (2) ◽  
pp. 87-97

Ischemia-reperfusion of cardiac tissues may lead to a prominent damage of the myocyte through either necrosis or apoptosis that seems to be the predominant modes of death during this period. In this study, we investigated the effects of L-Methionine in regional ischemia/ reperfusion injury and apoptosis. Dwale-sprague rats were divided into four groups (six rats per group). Sham group, rats were subjected for all surgical procedure without ligation of the left interior descending coronary artery (LAD). Control group, in which LAD was ligated. Control vehicle and L-methionine treated groups, rats pretreated with normal saline and L-methionine (100 mg/kg, IP ), respectively, for 7 days then subjected to the surgical procedure with ligation of LAD for 25 minutes followed by 120 minutes reperfusion. At the end of reperfusion, cardiac tissue TNF-α, IL-1β, IL-6 and ssDNA, as well as plasma cardiac troponin I (cTnI) were measured. It has been found that L-methionine treated group showed significant reduction (P˂0.05) in TNFα, IL-1β, IL-6, ssDNA and cTnI with respect to the control groups. Histopathology study revealed that the treatment with L-methionine significantly (P˂0.05) improved cardiac injury as compared with control groups and the total severity scores showed that the cardiac injury was mild (score 1) in 50.0%, moderate (score 2) in 33.3% and sever (score 3) in 16.7% of L-methionine treated group. It is concluded that L-methionine reduces inflammatory reaction associated with ischemia/reperfusion injury induced by LAD ligation in addition to its reduction for cardiac injury induced by ischemia reperfusion.

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Fadhil G. Al-Amran ◽  
Najah R. Hadi ◽  
Haider S. H. Al-Qassam

Background. Global myocardial ischemia reperfusion injury after heart transplantation is believed to impair graft function and aggravate both acute and chronic rejection episodes. Objectives. To assess the possible protective potential of MK-886 and 3,5-diiodothyropropionic acid DITPA against global myocardial ischemia reperfusion injury after heart transplantation. Materials and Methods. Adult albino rats were randomized into 6 groups as follows: group I sham group; group II, control group; groups III and IV, control vehicles (1,2); group V, MK-886 treated group. Donor rats received MK-886 30 min before transplantation, and the same dose was repeated for recipients upon reperfusion; in group VI, DITPA treated group, donors and recipients rats were pretreated with DITPA for 7 days before transplantation. Results. Both MK-886 and DITPA significantly counteract the increase in the levels of cardiac TNF-α, IL-1β, and ICAM-1 and plasma level of cTnI (). Morphologic analysis showed that both MK-886 and DITPA markedly improved () the severity of cardiac injury in the heterotopically transplanted rats. Conclusions. The results of our study reveal that both MK-886 and DITPA may ameliorate global myocardial ischemia reperfusion injury after heart transplantation via interfering with inflammatory pathway.


2011 ◽  
Vol 39 (03) ◽  
pp. 489-502 ◽  
Author(s):  
Cheng Jin ◽  
Pei-Jian Zhang ◽  
Chuan-Qing Bao ◽  
Yuan-Long Gu ◽  
Bing-Hua Xu ◽  
...  

Atractylodes macrocephala polysaccharide (AMP), a traditional Chinese medicine, is thought to have protective effects against liver injury. Therefore, this study was designed to explore the effects of AMP on hepatic ischemia–reperfusion injury (IRI) and elucidate the possible mechanisms. Ninety-six Sprague-Dawley rats were randomly divided into four groups with 24 rats per group: a normal control group, an IRI group, an AMP-treated group (0.4 g/kg/d) and a bifendate-treated group (100 mg/kg). Rats were treated with AMP or bifendate once daily for seven days by gastric gavage. The normal control group and the IRI model group received an equivalent volume of physiological saline. At 1, 6 and 24 h after surgery, the rats were killed and liver tissue samples were obtained to determine interleukin-1 (IL-1) expression by Western blotting and nuclear factor-κB (NF-κB) expression by immunohistochemistry. Liver morphology was assessed by microscopy and transmission electron microscopy. Blood samples were obtained to measure liver function (alanine aminotransferase, aspartate aminotransferase, total bilirubin and direct bilirubin). AMP significantly reduced the elevated expression of markers of liver dysfunction and the hepatic morphologic changes induced by hepatic IRI in rats. AMP also markedly inhibited IRI-induced lipid peroxidation and altered the activities of the antioxidant enzyme superoxide dismutase and malondialdehyde levels. Moreover, pretreatment with AMP suppressed the expression of interleukin-1β and NF-kB in IRI-treated rats. These results suggest that AMP exerts protective and therapeutic effects against hepatic IRI in rats, which might be associated with its antioxidant properties and inhibition of NF-κB activation. More studies are needed to better understand the mechanisms underlying the protective effects of AMP on hepatic IRI.


2020 ◽  
Vol 23 (3) ◽  
pp. 214-224 ◽  
Author(s):  
Esra Cakir ◽  
Ufuk Cakir ◽  
Cuneyt Tayman ◽  
Tugba Taskin Turkmenoglu ◽  
Ataman Gonel ◽  
...  

Background: Activated inflammation and oxidant stress during cerebral ischemia reperfusion injury (IRI) lead to brain damage. Astaxanthin (ASX) is a type of carotenoid with a strong antioxidant effect. Objective: The aim of this study was to investigate the role of ASX on brain IRI. Methods: A total of 42 adult male Sprague-Dawley rats were divided into 3 groups as control (n=14) group, IRI (n=14) group and IRI + ASX (n=14) group. Cerebral ischemia was instituted by occluding middle cerebral artery for 120 minutes and subsequently, reperfusion was performed for 48 hours. Oxidant parameter levels and protein degradation products were evaluated. Hippocampal and cortex cell apoptosis, neuronal cell count, neurological deficit score were evaluated. Results: In the IRI group, oxidant parameter levels and protein degradation products in the tissue were increased compared to control group. However, these values were significantly decreased in the IRI + ASX group (p<0.05). There was a significant decrease in hippocampal and cortex cell apoptosis and a significant increase in the number of neuronal cells in the IRI + ASX group compared to the IRI group alone (p<0.05). The neurological deficit score which was significantly lower in the IRI group compared to the control group was found to be significantly improved in the IRI + ASX group (p<0.05). Conclusion: Astaxanthin protects the brain from oxidative damage and reduces neuronal deficits due to IRI injury.


2006 ◽  
Vol 290 (3) ◽  
pp. C719-C727 ◽  
Author(s):  
Frank C. Chen ◽  
Ozgur Ogut

The severity and duration of ischemia-reperfusion injury is hypothesized to play an important role in the ability of the heart subsequently to recover contractility. Permeabilized trabeculae were prepared from a rat model of ischemia-reperfusion injury to examine the impact on force generation. Compared with the control perfused condition, the maximum force (Fmax) per cross-sectional area and the rate of tension redevelopment of Ca2+-activated trabeculae fell by 71% and 44%, respectively, during ischemia despite the availability of a high concentration of ATP. The reduction in Fmax with ischemia was accompanied by a decline in fiber stiffness, implying a drop in the absolute number of attached cross bridges. However, the declines during ischemia were largely recovered after reperfusion, leading to the hypothesis that intrinsic, reversible posttranslational modifications to proteins of the contractile filaments occur during ischemia-reperfusion injury. Examination of thin-filament proteins from ischemic or ischemia-reperfused hearts did not reveal proteolysis of troponin I or T. However, actin was found to be glutathionylated with ischemia. Light-scattering experiments demonstrated that glutathionylated G-actin did not polymerize as efficiently as native G-actin. Although tropomyosin accelerated the time course of native and glutathionylated G-actin polymerization, the polymerization of glutathionylated G-actin still lagged native G-actin at all concentrations of tropomyosin tested. Furthermore, cosedimentation experiments demonstrated that tropomyosin bound glutathionylated F-actin with significantly reduced cooperativity. Therefore, glutathionylated actin may be a novel contributor to the diverse set of posttranslational modifications that define the function of the contractile filaments during ischemia-reperfusion injury.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Haobo Li ◽  
Michael G Irwin ◽  
Zhengyuan Xia

Introduction: Signal transducer and activator of transcription 3 (STAT3) plays a key role in postconditioning (IPo) mediated protection against myocardial ischemia reperfusion injury, but the mechanism by which IPo activates STAT3 is unknown. Adiponectin (APN), a protein with anti-ischemic properties, activates STAT3. We hypothesized that IPo activates mitochondrial STAT3 (MitoSTAT3) via APN signaling. Methods and Results: Wild type (WT) and APN knockout (KO) mice were either sham operated or subjected to 30 min of coronary artery occlusion followed by 2 hours of reperfusion with or without IPo (3 cycles of 10 seconds reperfusion and 10 seconds reocclusion; n=8/group). At the end of reperfusion, KO mice exhibited more severe myocardial injury evidenced as increased infarct size (% of area at risk) 49.2±2.0 vs WT 39.4±3.5, P <0.01; plasma troponin I (ng/ml): KO 72.8±7.6 vs WT 45.7±4.0, P <0.01; worse cardiac function (lower dP/dt max and end-systolic pressure-volume relation, P <0.05); more severely impaired mitochondrial function (reductions in complex IV and complex V protein expression) and more severe reduction of MitoSTAT3 phosphorylation (activation) at site Ser727, P <0.01. IPo significantly attenuated post-ischemic cardiac injury and dysfunction with a concomitant increase in phosphorylated MitoSTAT3 and attenuation of mitochondrial dysfunction in WT (all P <0.05) but not in KO mice. In cultured cardiac H9C2 cells, hypoxic postconditioning (HPo, 3 cycles of 5 min hypoxia and 5 min reoxygenation) significantly attenuated hypoxia/reoxygenation (HR, 3 hours hypoxia/3 hours reoxygenation) induced cell injury (increased apoptotic cell death as % of HR): HR 100.2±0.4 vs HPo 78.2±4.8, P <0.05) and reduced mitochondrial transmembrane potential (% total cells, HR 37.2±4.9 vs HPo 23.5±3.7, P <0.01). APN, adiponectin receptor 1 (AdipoR1), or STAT3 gene knockdown but not AdipoR2 gene knockdown, respectively, abolished HPo cellular protection (all P <0.05 vs. HPo). APN supplementation (10μg/ml) restored HPo protection in cells with APN knockdown but not in cells with AdipoR1or STAT3 gene knockdown. Conclusion: Adiponectin and AdipoR1 signaling are required for IPo to activate myocardial mitochondrial STAT3 to confer cardioprotection.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jingyuan Li ◽  
Mansoureh Eghbali

Introduction: We have recently shown that the heart of late pregnant (LP) rodent is more prone to ischemia/reperfusion (I/R) injury compared to non-pregnant. We also reported that post-ischemic adminstartion of (ITLD) protects the LP hearts against I/R injury. Here we investigated Survivor Activating Factor Enhancement (SAFE) pathway, which requires the activation of the signal transducer and activator of transcription 3 (STAT-3) and it can successfully lessen cardiomyocyte death at the time of reperfusion, independently of the activation of the already well-described Reperfusion Injury Salvage Kinase (RISK) pathway (which includes activation of phosphoinositide 3-kinase (PI3K) signaling pathways) in ITLD-induced cardioprotetion. Methods: Isolated LP mouse hearts were subjected to 20 min ischemia followed by 40 reperfusion with 1) Krebs Henseleit buffer (CTRL group), 2) 1% intralipid (ITLD group) or 3) ITLD+STAT3 inhibitor Stattic (20 μM, Stattic group), and 4) ITLD+PI3K inhibitor LY294002 (45 μM). Hemodynamics and myocardial infarction were measured. Two-way and one-way ANOVA was used for statistical analysis. The data are from four to six mice in each group. P<0.05 was considered statistically significant. Values are expressed as mean± SE. Results: The Intralipid-induced cardioprotection was only partially abolished by PI3K inhibitor, LY294002, whereas it was fully abolished when stattic was applied at the end of 40 min reperfusion. The RPP was significantly lower in LY294002 treated group compared to the group treated with Intralipid alone, but still significantly higher than ITLD+Stattic: RPP=8881±1331 mmHg*beats/min in ITLD vs. 5212±1955 mmHg*beats/min in ITLD+LY, p<0.05; 1186±563 mmHg*beats/min in ITLD+Stattic vs. 5212±1955 mmHg*beats/min in ITLD+LY, p<0.05. The infarct size was also larger in LY294002 treated group when compared to Intralipid alone (32.8±3.1% in ITLD+LY vs. 21.7±2.6% in ITLD, p<0.05), but lower than ITLD+Stattic group (32.8±3.1% in ITLD+LY vs 47.9±2.5% ITLD+Stattic, p<0.05). Conclusion: Intralipid protects the heart of late pregnant mice against I/R injury mainly through SAFE-STAT3 pathway.


2017 ◽  
Vol 11 (1-2) ◽  
pp. 19 ◽  
Author(s):  
Gokhun Ozmerdiven ◽  
Burhan Coskun ◽  
Onur Kaygisiz ◽  
Berna Aytac Vuruskan ◽  
Burak Asiltas ◽  
...  

Introduction: Nitric oxide (NO) plays an important role in the ischemia and reperfusion process. In this study, we aimed to examine the effect of L-arginine, tadalafil, and their combination for preventionof the ischemia reperfusion injury after testis torsion in rats.Methods: A total of 40 adult, male Sprague-Dawley rats were allocated into five groups. Three hours of left testicular torsion was performed in each group, excluding the control group. While the ischemia reperfusion (I/R) group had no treatment, I/R + Arg group received L-arginine, I/R + Td group received tadalafil and I/R + Arg + Td group received tadalafil and L-arginine 30 minutes before the detorsion. Then the left testis was untwisted for four hours of reperfusion. After bilateral orchiectomy, lipid peroxidation (LPx) and glutathione (GSH) activities were examined in testicular tissue.Spermatogenesis was evaluated with Johnsen’s score.Results: LPx levels of the I/R group were found to be significantly higher than for groups that received drugs for both testes (p<0.001). GSH levels of the combination group were higher than I/R group inipsilateral testis (p<0.01) and it was significantly higher than other groups for contralateral testis (p<0.001 for I/R group, p<0.01 for I/R + Arg, p<0.05 for I/R + Td). Mean Johnsen’s score of the I/Rgroup was found to be significantly lower than treatment groups in ipsilateral testis (p<0.001 for I/R + Arg + Td group, p<0.01 for other treatment goups) and contralateral testis (p<0.001). The meanJohnsen score of the combination group was significantly higher than that of other treatment groups in ipsilateral testis (p<0.05) and it was significantly higher than in the I/R + Td group in the contralateral testis (p<0.05).Conclusions: L-arginine, tadalafil, and combination of these two molecules showed protective effect against ischemia/reperfusion injury for both testes after unilateral testis torsion.


2019 ◽  
Vol 5 (2) ◽  
pp. e19-e19
Author(s):  
Leila Mohmoodnia ◽  
Sarina Safari Ahmadvand ◽  
Sahar Koushki ◽  
Behrooz Farzan ◽  
Sajad Papi ◽  
...  

Introduction: Renal ischemia reperfusion injury is one of the main causes of acute renal failure, which is associated with high mortality. Tissue damage caused by ischemia-reperfusion occurs due to the release of oxygen free radicals. Type I angiotensin receptor antagonists such as valsartan can be useful in the treatment of chronic kidney disease and hypertension. Objectives: We aimed to evaluate the protective effect of valsartan against renal ischemia reperfusion via antioxidant property and nitric oxide (NO) signaling pathway. Materials and Methods: Fifty male Wistar rats (220±10 g) were randomly divided into five groups as follows: Group 1; healthy rats without ischemia-reperfusion (control group). Group 2; rats with ischemia reperfusion (IR) (IR control group). Group 3; rats with IR which received 30 mg/kg valsartan orally. Group 4; rats with IR which received 30 mg/kg valsartan together with 40 mg/kg L-NAME. Group 5; rats with IR which received 30 mg/kg valsartan together with 40 mg/kg L-arginine. To induce ischemia-reperfusion, rats were anesthetized with thiopental and underwent surgery. Then, we induced ischemia with blocking blood vessels for 45 minutes by clamping. Biochemical parameters including urea and creatinine were measured using commercial kits. Oxidative stress and inflammatory parameters were measured by ELISA method. Renal tissues were stained with hematoxylin and eosin. Finally, the Kolmogorov-Smirnov test was used to determine the normal distribution of data. Results: The findings of this study indicated that treatment with valsartan and valsartan plus L-arginine leads to significant decrease in the serum levels of creatinine, urea, and albumin/creatinine, malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in contrast to IR control group which has increased level of these parameters. On the other hand, treatment with valsartan and valsartan plus L-arginine lead to increase in the serum levels of glutathione peroxidase (GPX), in contrast to ischemia reperfusion control group. Conclusion: Our data revealed that valsartan as a type I angiotensin receptor antagonist could decrease oxidative stress and inflammation due to renal ischemia reperfusion injury. Hence, valsartan could propose as a therapeutic agent for kidney diseases such as renal ischemia-reperfusion injury regarded to these renoprotective effects.


2021 ◽  
Author(s):  
Xiang Xie ◽  
Zhongbao Zhao ◽  
Danyong Liu ◽  
Dengwen Zhang ◽  
Yi He ◽  
...  

Abstract Background Reduced levels of myocardial STAT3 activity in diabetic hearts may contribute to the increased susceptibility to ischemia-reperfusion injury (I/RI). The protein mammalian target of rapamycin (mTOR) can regulate metabolism and cell processes and plays major roles in the dynamics of I/RI. However, the role of mTOR in regulation of myocardial STAT3 and thereby affect myocardial I/RI in diabetes at relatively late stages of the disease is unknown. Methods Diabetes was induced by Streptozotocin in Sprague-Dawley rats. Myocardial I/RI was achieved with coronary occlusion for 30 minutes and reperfusion for 2 hours in absence or presence of the mTOR inhibitor rapamycin. In vitro cardiomyocyte hypoxia/re-oxygenation (H/R) was established within H9C2 cells. Results In diabetic rats, the levels of troponin-I (Tn-I), lipid peroxidation products 15-F2t-Isoprostane (15-F2t-Iso) and MDA, and the expression of protein mTOR were all significantly increased,and SOD releasing, the expression of protein phosphorylation of STAT3(p-STAT3-Ser727) were both significantly decreased compared to non-diabetic rats. Myocardial I/RI significantly increased the infract size (IS) and further increased the mTOR activation and decreased p-STAT3-Ser727 compared to diabetic rats. The selective mTOR inhibitor rapamycin reversed these changes and conferred cardioprotective effect. In H9C2 cells, high glucose (HG) significantly increased lactic dehydrogenase (LDH) release, apoptosis cells, ROS release, activation of mTOR, and decreased p-STAT3-Ser727. H/R further increased cellular injury, mTOR knock-down significantly reduced H/R injury. Conclusion Myocardial mTOR was enhanced in diabetes and contributed to I/RI. mTOR inhibition attenuated myocardial I/RI through increasing p-STAT3-Ser727.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maha Sadek El Derh ◽  
Samar Mohamed Abdel Twab ◽  
Mohamed Elgouhary

Abstract Background Off pump coronary artery revascularization (OPCAB) surgeries have benefits over the conventional on pump cardiac surgery, because it avoids the trauma caused by cardiopulmonary bypass (CPB) and minimize aortic manipulation. However, some disadvantages of OPCAB include the concern of ineffective coronary revascularization. Some drugs have shown the ability to protect the myocardium in different studies, by different methods. The usage of intralipid has been shown to make a better functional recovery of the cardiac muscles and help to decrease the myocardial infarct size, it shortens the action potential time, which show polyunsaturated fatty acids diets mechanism as an antiarrhythmic drug, and are associated with low incidence of coronary artery disease. Methods We divided patients into two groups according to the randomization envelopes: intralipid group (group A) received 1.5 ml/kg intralipid 20% through central venous line after sternotomy over 1 h and during infusion, blood pressure, heart rate, and temperature were monitored all through the infusion time. Control group (group B) received normal saline 0.9% in the same volume over the same duration. Results This study showed that infusion of 1.5 ml/kg intralipid after sternotomy in off pump coronary artery revascularization given as preconditioning agent improve the myocardial ischemia reperfusion injury, decrease the need for high doses of nor adrenaline infusion after revascularization, earlier normalization in troponin levels starting 24 h after surgery and higher values of cardiac index were measured in ICU using PICCO. Conclusions This study showed the benefits of infusion of 1.5 ml/kg of intralipid after sternotomy, in preconditioning during OPCABG. Preconditioning with intralipid proved to decrease reperfusion injury in myocardium expressed by improvement in cardiac functions (EF and cardiac index) and normalization of specific cardiac marker (cardiac troponin I).


Sign in / Sign up

Export Citation Format

Share Document