EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FORCED CONVECTIVE HEAT TRANSFER COEFFICIENT IN NANOFLUIDS OF AL2O3/WATER AND CuO/EG IN A SERPENTINE SHAPED MICROCHANNEL HEAT SINK

2015 ◽  
Vol 33 (1) ◽  
pp. 155-160 ◽  
Author(s):  
A. Sivakumar ◽  
N. Alagumurthi ◽  
T. Senthilvelan
2011 ◽  
Vol 396-398 ◽  
pp. 2234-2239
Author(s):  
Zu Ling Liu ◽  
Cheng Bo Wu ◽  
Xian Jun Wang ◽  
Zheng Rong Zhang

A comprehensive experiment was conducted for heat transfer characteristics for an array of impinging gaseous slot jets to a flat plate with strong turbulence (nozzle exit Reynolds number Re=22500~64700).Find that turbulence intensity of flow has an important influence on local forced convective heat transfer coefficient. Meanwhile, the nozzle-to-plate spacing and nozzle exit Reynolds number Re would affect the mean forced convective heat transfer coefficient of the slot jets. And heat transfer efficiency of slot jets has been set to show the relation between ability of the jets and energy consumption of gas supply.


2013 ◽  
Vol 420 ◽  
pp. 118-122 ◽  
Author(s):  
Prem Gunnasegaran ◽  
Noel Narindra ◽  
Norshah Hafeez Shuaib

This paper discusses the impact of using various types of nanofluids and nanoparticle volume fractions on heat transfer and fluid flow characteristics in a wavy microchannel heat sink (WMCHS) with rectangular cross-section. Numerical investigations using three different types of nanofluids including Al2O3-H2O, CuO-H2O, and diamond-H2O with a fixed nanoparticle volume fraction of 3% and using a diamond-H2O with nanoparticle volume fractions ranging from 0.5% to 5% are examined. This investigation covers Reynolds numbers in the range of 100 to 1000. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using the finite-volume method (FVM). The computational model is used to study the variations of convective heat transfer coefficient, pressure drop and wall shear stress. It is inferred that the convective heat transfer coefficient of a WMCHS cooled with the nanofluid flow showed marked improvement over the pure water with a smaller pressure drop penalty.


2007 ◽  
Vol 129 (4) ◽  
pp. 518-521 ◽  
Author(s):  
Gaowei Xu ◽  
Yingjun Cheng ◽  
Le Luo

The heat-transfer characteristics of 128 small-sized plate-fin heat sinks in a supercomputer chassis are investigated with CFD simulation. The V-shaped curves of the chip temperature versus fin pitch and fin thickness are derived and a thermal resistance model is built to explore the profile and obtain the convective heat-transfer coefficient of the heat sinks. It turns out that the V-shaped profile arises from the joint action of the thermal conduction and convection of heat sink, which can be attributed to the intricacy of the dependencies of thermal resistances on either fin pitch or thickness. It can be further concluded that Biot criterion is applicable to estimate the Biot number of large-scale plate-fin heat sink but not applicable for the small-sized one. The convective heat-transfer coefficient is a complicated function of fin pitch and fin thickness. The empirical formulas of heat transfer are obtained and the fin pitch and fin thickness are optimized.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 380 ◽  
Author(s):  
Dalei Jing ◽  
Jian Song

This paper numerically studies the thermal performances of electroosmotic flow (EOF) in a symmetric Y-shaped microchannel heat sink (MCHS) having a constant total channel surface area, that is, constant convective heat transfer area. It is found that the average convective heat transfer coefficient of EOF increases with the increasing driven voltage, which is attributed to the increase of EOF flowrate with the increasing driven voltage. However, the maximum MCHS temperature shows an increasing after decreasing trend with the driven voltage owing to the dramatically increasing Joule heating when the voltage is large enough. Further, both the maximum MCHS temperature and average convective heat transfer coefficient are sensitive to the cross-sectional dimensions of the Y-shaped microchannels. The thermal performances of EOF in the Y-shaped MCHS show a strengthening to weakening trend with the increasing daughter-to-parent channel diameter ratio of the Y-shaped microchannel with circular cross-sectional shape, and show a similar strengthening to weakening trend with the increasing daughter-to-parent channel width ratio and the increasing microchannel height of the Y-shaped microchannel with rectangular cross-sectional shape. These cross-sectional dimension dependences of thermal performances are related to the increasing to decreasing trend of EOF flowrate changing with the microchannel cross-sectional dimensions.


Sign in / Sign up

Export Citation Format

Share Document