scholarly journals Abnormal Behavior Recognition in Classroom Pose Estimation of College Students Based on Spatiotemporal Representation Learning

2021 ◽  
Vol 38 (1) ◽  
pp. 89-95
Author(s):  
Yunfang Xie ◽  
Su Zhang ◽  
Yingdi Liu

Artificial intelligence and fifth generation (5G) technology are widely adopted to evaluate the classroom poses of college students, with the help of campus video surveillance equipment. To ensure the effective learning in class, it is important to detect and intervene in abnormal behaviors like sleeping and using cellphones in time. Based on spatiotemporal representation learning, this paper presents a deep learning algorithm to evaluate classroom poses of college students. Firstly, feature engineering was adopted to mine the moving trajectories of college students, which were used to determine student distribution and establish a classroom prewarning system. Then, k-means clustering (KMC) was employed for cluster analysis on different student groups, and identify the features of each group. For a specific student group, the classroom surveillance video was decomposed into several frames; the edge of each frame was extracted by edge detection algorithm, and imported to the proposed convolutional neural network (CNN). Experimental results show that our algorithm is 5% more accurate than the benchmark three-dimensional CNN (C3D), making it an effective tool to recognize abnormal behaviors of college students in class.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yiran Feng ◽  
Xueheng Tao ◽  
Eung-Joo Lee

In view of the current absence of any deep learning algorithm for shellfish identification in real contexts, an improved Faster R-CNN-based detection algorithm is proposed in this paper. It achieves multiobject recognition and localization through a second-order detection network and replaces the original feature extraction module with DenseNet, which can fuse multilevel feature information, increase network depth, and avoid the disappearance of network gradients. Meanwhile, the proposal merging strategy is improved with Soft-NMS, where an attenuation function is designed to replace the conventional NMS algorithm, thereby avoiding missed detection of adjacent or overlapping objects and enhancing the network detection accuracy under multiple objects. By constructing a real contexts shellfish dataset and conducting experimental tests on a vision recognition seafood sorting robot production line, we were able to detect the features of shellfish in different scenarios, and the detection accuracy was improved by nearly 4% compared to the original detection model, achieving a better detection accuracy. This provides favorable technical support for future quality sorting of seafood using the improved Faster R-CNN-based approach.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012698
Author(s):  
Ravnoor Singh Gill ◽  
Hyo-Min Lee ◽  
Benoit Caldairou ◽  
Seok-Jun Hong ◽  
Carmen Barba ◽  
...  

Objective.To test the hypothesis that a multicenter-validated computer deep learning algorithm detects MRI-negative focal cortical dysplasia (FCD).Methods.We used clinically-acquired 3D T1-weighted and 3D FLAIR MRI of 148 patients (median age, 23 years [range, 2-55]; 47% female) with histologically-verified FCD at nine centers to train a deep convolutional neural network (CNN) classifier. Images were initially deemed as MRI-negative in 51% of cases, in whom intracranial EEG determined the focus. For risk stratification, the CNN incorporated Bayesian uncertainty estimation as a measure of confidence. To evaluate performance, detection maps were compared to expert FCD manual labels. Sensitivity was tested in an independent cohort of 23 FCD cases (13±10 years). Applying the algorithm to 42 healthy and 89 temporal lobe epilepsy disease controls tested specificity.Results.Overall sensitivity was 93% (137/148 FCD detected) using a leave-one-site-out cross-validation, with an average of six false positives per patient. Sensitivity in MRI-negative FCD was 85%. In 73% of patients, the FCD was among the clusters with the highest confidence; in half it ranked the highest. Sensitivity in the independent cohort was 83% (19/23; average of five false positives per patient). Specificity was 89% in healthy and disease controls.Conclusions.This first multicenter-validated deep learning detection algorithm yields the highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk stratification this classifier may assist clinicians to adjust hypotheses relative to other tests, increasing diagnostic confidence. Moreover, generalizability across age and MRI hardware makes this approach ideal for pre-surgical evaluation of MRI-negative epilepsy.Classification of evidence.This study provides Class III evidence that deep learning on multimodal MRI accurately identifies FCD in epilepsy patients initially diagnosed as MRI-negative.


2019 ◽  
Author(s):  
Ben. G. Weinstein ◽  
Sergio Marconi ◽  
Stephanie A. Bohlman ◽  
Alina Zare ◽  
Ethan P. White

AbstractTree detection is a fundamental task in remote sensing for forestry and ecosystem ecology applications. While many individual tree segmentation algorithms have been proposed, the development and testing of these algorithms is typically site specific, with few methods evaluated against data from multiple forest types simultaneously. This makes it difficult to determine the generalization of proposed approaches, and limits tree detection at broad scales. Using data from the National Ecological Observatory Network we extend a recently developed semi-supervised deep learning algorithm to include data from a range of forest types, determine whether information from one forest can be used for tree detection in other forests, and explore the potential for building a universal tree detection algorithm. We find that the deep learning approach works well for overstory tree detection across forest conditions, outperforming conventional LIDAR-only methods in all forest types. Performance was best in open oak woodlands and worst in alpine forests. When models were fit to one forest type and used to predict another, performance generally decreased, with better performance when forests were more similar in structure. However, when models were pretrained on data from other sites and then fine-tuned using a small amount of hand-labeled data from the evaluation site, they performed similarly to local site models. Most importantly, a universal model fit to data from all sites simultaneously performed as well or better than individual models trained for each local site. This result suggests that RGB tree detection models that can be applied to a wide array of forest types at broad scales should be possible.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012062
Author(s):  
Chengshuai Fan

Abstract The magnetic tile image has the characteristics of uneven illumination, complex surface texture, and low contrast. Aiming at the problem that the traditional defect detection algorithm is difficult to accurately identify the defects, and the deep learning algorithm is difficult to balance the classification accuracy and the size of the speed model, a defect classification algorithm based on attention-based EfficientNet is proposed. The algorithm first enhances the network’s spatial and location information for image features by integrating the Convolutional Block Attention Module, and improves the network’s ability to identify defects. Then, on this basis, Criss-Cross Attention is added to the network, so that the network can better the context information of the horizontal and vertical cross of image features, so that each pixel can finally capture the full image dependency of all pixels. Experimental results show that the algorithm has higher classification accuracy than EfficientNet-B0, reached 99.11%, and has a better balance between accuracy, speed and model size than other classification models.


2021 ◽  
Author(s):  
Jacob Johnson ◽  
Kaneel Senevirathne ◽  
Lawrence Ngo

In this work, we report the results of a deep-learning based liver lesion detection algorithm. While several liver lesion segmentation and classification algorithms have been developed, none of the previous work has focused on detecting suspicious liver lesions. Furthermore, their generalizability remains a pitfall due to their small sample size and sample homogeneity. Here, we developed and validated a highly generalizable deep-learning algorithm for detection of suspicious liver lesions. The algorithm was trained and tested on a diverse dataset containing CT exams from over 2,000 hospital sites in the United States. Our final model achieved an AUROC of 0.84 with a specificity of 0.99 while maintaining a sensitivity of 0.33.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jian Li ◽  
Yongyan Zhao

As the national economy has entered a stage of rapid development, the national economy and social development have also ushered in the “14th Five-Year Plan,” and the country has also issued support policies to encourage and guide college students to start their own businesses. Therefore, the establishment of an innovation and entrepreneurship platform has a significant impact on China’s economy. This gives college students great support and help in starting a business. The theory of deep learning algorithms originated from the development of artificial neural networks and is another important field of machine learning. As the computing power of computers has been greatly improved, especially the computing power of GPU can quickly train deep neural networks, deep learning algorithms have become an important research direction. The deep learning algorithm is a nonlinear network structure and a standard modeling method in the field of machine learning. After modeling various templates, they can be identified and implemented. This article uses a combination of theoretical research and empirical research, based on the views and research content of some scholars in recent years, and introduces the basic framework and research content of this article. Then, deep learning algorithms are used to analyze the experimental data. Data analysis is performed, and relevant concepts of deep learning algorithms are combined. This article focuses on exploring the construction of an IAE (innovation and entrepreneurship) education platform and making full use of the role of deep learning algorithms to realize the construction of innovation and entrepreneurship platforms. Traditional methods need to extract features through manual design, then perform feature classification, and finally realize the function of recognition. The deep learning algorithm has strong data image processing capabilities and can quickly process large-scale data. Research data show that 49.5% of college students and 35.2% of undergraduates expressed their interest in entrepreneurship. Entrepreneurship is a good choice to relieve employment pressure.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 536
Author(s):  
Pasquale Arpaia ◽  
Federica Crauso ◽  
Egidio De Benedetto ◽  
Luigi Duraccio ◽  
Giovanni Improta ◽  
...  

This work addresses the design, development and implementation of a 4.0-based wearable soft transducer for patient-centered vitals telemonitoring. In particular, first, the soft transducer measures hypertension-related vitals (heart rate, oxygen saturation and systolic/diastolic pressure) and sends the data to a remote database (which can be easily consulted both by the patient and the physician). In addition to this, a dedicated deep learning algorithm, based on a Long-Short-Term-Memory Autoencoder, was designed, implemented and tested for providing an alert when the patient’s vitals exceed certain thresholds, which are automatically personalized for the specific patient. Furthermore, a mobile application (EcO2u) was developed to manage the entire data flow and facilitate the data fruition; this application also implements an innovative face-detection algorithm that ensures the identity of the patient. The robustness of the proposed soft transducer was validated experimentally on five individuals, who used the system for 30 days. The experimental results demonstrated an accuracy in anomaly detection greater than 93%, with a true positive rate of more than 94%.


Sign in / Sign up

Export Citation Format

Share Document