scholarly journals Effect of formation water and hydrochloric acid on the physical and chemical properties of polymer materials of high pressure pipelines used for transportation of crude oil

2020 ◽  
Author(s):  
D. Aiduganov ◽  
D. Balkaev ◽  
M. Varfolomeev ◽  
D. Emelianov

The purpose of the work is to conduct a comparative analysis of the stability of two types of polymer coatings to the effects of formation water and hydrochloric acid based on the analysis of mechanical properties, thermal stability and surface morphology. To accomplish the task, modern physical-chemical methods were used: differential scanning calorimetry, microscopy, an electromechanical universal testing machine, a dilatometer. Simulation of the effect of water at elevated temperatures and pressures on the polymer coating samples was carried out in an autoclave-reactor, the study of the effect of acid was carried out in a glass beaker. On the basis of the work carried out, results were obtained that show similarities and differences in the behavior of the polymer samples studied. The change of the dynamic modulus of elasticity and the coefficient of linear thermal expansion with increasing temperature is investigated. In general, it has been shown that PE-RT polymer has better characteristics than PE polymer. However, both of them are stable to the exposure of formation water and hydrochloric acid and can protect corrosion of high pressure pipes connections.

2019 ◽  
Vol 121 ◽  
pp. 04001
Author(s):  
Dmitrii Aiduganov ◽  
Dinar Balkaev ◽  
Mikhail Varfolomeev ◽  
Dmitrii Emelianov

The purpose of the work is to conduct a comparative analysis of the stability of two types of polymer coatings to the effects of formation water and hydrochloric acid based on the analysis of mechanical properties, thermal stability and surface morphology. To accomplish the task, modern physical-chemical methods were used: differential scanning calorimetry, microscopy, an electromechanical universal testing machine, a dilatometer. Simulation of the effect of water at elevated temperatures and pressures on the polymer coating samples was carried out in an autoclave-reactor, the study of the effect of acid was carried out in a glass beaker. On the basis of the work carried out, results were obtained that show similarities and differences in the behavior of the polymer samples studied. The change of the dynamic modulus of elasticity and the coefficient of linear thermal expansion with increasing temperature is investigated. In general, it has been shown that PE-RT polymer has better characteristics than PE polymer. However, both of them are stable to the exposure of formation water and hydrochloric acid and can protect corrosion of high pressure pipes connections.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Muhammad Sarfraz

Electroconductive structural polymer-based nanocomposites (NCs) were prepared by incorporating carbon nanotubes (CNTs) into Polybond (PB) matrix via melt compounding technique. Chemical structure of NCs, investigated via Fourier transform infrared (FTIR) spectroscopy, corroborated successful grafting of CNTs functional groups onto PB chains. The morphology of NCs, as examined by scanning electron microscopy (SEM), ensured their optimum state of dispersion. Electrical conductivity, melting transition temperatures, mechanical properties, and chemical resistance of NCs were improved by incorporating CNTs into PB as established by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), high resistance meter (HRM), Universal Testing Machine (UTM), and chemical resistivity measurements, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jian Wang ◽  
Chunzheng Wang ◽  
Mingtao Run

For preparing good performance polymer materials, poly(trimethylene terephthalate)/CaCO3nanocomposites were prepared and their morphology, rheological behavior, mechanical properties, heat distortion, and crystallization behaviors were investigated by transmission electron microscopy, capillary rheometer, universal testing machine, impact tester, heat distortion temperature tester, and differential scanning calorimetry (DSC), respectively. The results suggest that the nano-CaCO3particles are dispersed uniformly in the polymer matrix. PTT/CaCO3nanocomposites are pseudoplastic fluids, and the CaCO3nanoparticles serve as a lubricant by decreasing the apparent viscosity of the nanocomposites; however, both the apparent viscosity and the pseudoplasticity of the nanocomposites increase with increasing CaCO3contents. The nanoparticles also have nucleation effects on PTT’s crystallization by increasing the crystallization rate and temperature; however, excessive nanoparticles will depress this effect because of the agglomeration of the particles. The mechanical properties suggest that the CaCO3nanoparticles have good effects on improving the impact strength and tensile strength with proper content of fillers. The nanofillers can greatly increase the heat distortion property of the nanocomposites.


2017 ◽  
Vol 1 (1) ◽  
pp. 39-43
Author(s):  
Łukasz Kantor ◽  
Krzysztof Michalik ◽  
Jadwiga Laska

The aim of the research was to select and evaluate polymers that could be used as rotor insulation in electric motors based on Halbach array system. Which have specific material properties, such as high mechanical strength, high thermal resistance and, especially, high thermal conductivity, also at room and at elevated temperatures. Three high performance polymers were selected for the research: polyetheretherketone (PEEK), polyamideimide (PAI) and poly(p-phenylene sulphide) (PPS). Polymers were evaluated for mechanical strength, thermal conductivity, thermal diffusivity, specific heat capacity, linear thermal expansion and also differential scanning calorimetry (DSC) and thermal gravimetry (TG) analyses were carried out. Analyses are proved that all materials have appropriate properties for advanced electric motor insulator.


2017 ◽  
Vol 37 (6) ◽  
pp. 599-606
Author(s):  
Muhammad Sarfraz

Abstract Electroconducting structural polymer-based nanocomposites were prepared by incorporating carbon nanotubes (CNTs) into commercially available Polybond (PB) using the melt compounding technique. The structural, morphological, electrical, thermal, mechanical, and chemical properties of the nanocomposites were investigated via Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, high resistance meter, a Universal Testing Machine (UTM), and chemical resistivity measurements, respectively. FTIR spectra showed the successful grafting of CNT functional groups onto polymer chains. SEM analysis confirmed that the optimum state of dispersion was made for the nanocomposites. Electrical conductivity, melting transition temperatures, mechanical properties, and chemical resistance were improved by incorporating CNTs into PB.


Author(s):  
Afzana Anwer ◽  
S. Eilidh Bedford ◽  
Richard J. Spontak ◽  
Alan H. Windle

Random copolyesters composed of wholly aromatic monomers such as p-oxybenzoate (B) and 2,6-oxynaphthoate (N) are known to exhibit liquid crystalline characteristics at elevated temperatures and over a broad composition range. Previous studies employing techniques such as X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) have conclusively proven that these thermotropic copolymers can possess a significant crystalline fraction, depending on molecular characteristics and processing history, despite the fact that the copolymer chains possess random intramolecular sequencing. Consequently, the nature of the crystalline structure that develops when these materials are processed in their mesophases and subsequently annealed has recently received considerable attention. A model that has been consistent with all experimental observations involves the Non-Periodic Layer (NPL) crystallite, which occurs when identical monomer sequences enter into register between adjacent chains. The objective of this work is to employ electron microscopy to identify and characterize these crystallites.


Author(s):  
Mariane Beatriz Sordi ◽  
Ariadne Cristiane Cabral da Cruz ◽  
Águedo Aragones ◽  
Mabel Mariela Rodríguez Cordeiro ◽  
Ricardo de Souza Magini

The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite / β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m:m) of this medication. Scaffolds were synthesized in a cylindric-shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in PBS at 37 °C under constant stirring for 7, 14, 21, and 28 days. Non-degraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro, meso, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented very similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1383
Author(s):  
Jerzy Korol ◽  
Aleksander Hejna ◽  
Klaudiusz Wypiór ◽  
Krzysztof Mijalski ◽  
Ewelina Chmielnicka

The recycling of plastics is currently one of the most significant industrial challenges. Due to the enormous amounts of plastic wastes generated by various industry branches, it is essential to look for potential methods for their utilization. In the presented work, we investigated the recycling potential of wastes originated from the agricultural films recycling line. Their structure and properties were analyzed, and they were modified with 2.5 wt % of commercially available compatibilizers. The mechanical and thermal performance of modified wastes were evaluated by tensile tests, thermogravimetric analysis, and differential scanning calorimetry. It was found that incorporation of such a small amount of modifiers may overcome the drawbacks caused by the presence of impurities. The incorporation of maleic anhydride-grafted compounds enhanced the tensile strength of wastes by 13–25%. The use of more ductile compatibilizers—ethylene-vinyl acetate and paraffin increased the elongation at break by 55–64%. The presence of compatibilizers also reduced the stiffness of materials resulting from the presence of solid particles. It was particularly emphasized for styrene-ethylene-butadiene-styrene and ethylene-vinyl acetate copolymers, which caused up to a 20% drop of Young’s modulus. Such effects may facilitate the further applications of analyzed wastes, e.g., in polymer film production. Thermal performance was only slightly affected by compatibilization. It caused a slight reduction in polyethylene melting temperatures (up to 2.8 °C) and crystallinity degree (up to 16%). For more contaminated materials, the addition of compatibilizers caused a minor reduction in the decomposition onset (up to 6 °C). At the same time, for the waste after three washing cycles, thermal stability was improved. Moreover, depending on the desired properties and application, materials do not have to go through the whole recycling line, simplifying the process, reducing energy and water consumption. The presented results indicate that it is possible to efficiently use the materials, which do not have to undergo the whole recycling process. Despite the presence of impurities, they could be applied in the manufacturing of products which do not require exceptional mechanical performance.


2012 ◽  
Vol 554-556 ◽  
pp. 2112-2115
Author(s):  
Hui Li ◽  
Xuan Wang ◽  
Yong Zhu ◽  
Qin Ren

Amber and copal belong to the natural resin, which are similar and transitional in the physical and chemical properties. The artificial heat-pressurized treatment is contributed to the polymerization of the natural copal, and turns into green, yellow-green and deep orange-yellow copal. It is very difficult to identify amber from the heat- pressurized treatment copal only based on the gemological parameters.The thermal behavior of amber and the copal before and after heat-pressurized treatment were analyzed by means of differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(NMR). The results show that amber exists an evident endothermic peak around 123~132°C, and copal reveals an obvious endothermic peak at about 174~178°C, and the heat pressurized treatment copal occurs a clear exothermic peak around 150~152°C. The differences between endothermic or exothermic transition and peak position reveal occurring thermal oxidation or the bond breaking or the melting, which are of great significance in the identification.


Sign in / Sign up

Export Citation Format

Share Document