A Review on Herbal Treatments for Trichomonas Vaginalis

Author(s):  
Fatemeh Rahmani ◽  
Yahya Ehteshaminia ◽  
Hamid Mohammadi ◽  
Seif Ali Mahdavi

Introduction: Trichomonas vaginalis is a protozoan parasite that infects the urogenital tract of men and women and causes trichomoniasis, a common sexually transmitted disease in both men and women. The infection is often asymptomatic, but it can be accompanied by symptoms such as severe inflammation, itching and burning, foamy discharge and foul-smelling mucus. In one year, 250 million cases of Trichomonas vaginalis were reported worldwide. Material and Methods: In this study, the websites of PubMed, Google Scholar, SID, and Margiran were searched and related articles were reviewed.    Results: Today, the most common treatment for this disease is the use of metronidazole. However, its side effects, which include hematological and neurotoxic effects, cannot be ignored. Because of these side effects, researchers are looking for a suitable replacement for metronidazole in the treatment of trichomoniasis. Researchers' desire to use  herbs can be due to various reasons such as fewer side effects, better patient acceptance, recommendation of traditional medicine, lower prices of herbs and also compatibility with the normal physiological function of the human body. Conclusion: Considering the inhibitory effects of medicinal plants on the growth and proliferation of Trichomonas vaginalis in vitro, it can be concluded that the use of these plants can have many applications in the treatment of trichomoniasis. As a result, by studying more about their advantages and disadvantages, it is possible to make a drug that has higher therapeutic effects with fewer side effects.

Parasitology ◽  
2019 ◽  
Vol 146 (9) ◽  
pp. 1206-1216 ◽  
Author(s):  
Victor Midlej ◽  
Felipe Rubim ◽  
Wilmer Villarreal ◽  
Érica S. Martins-Duarte ◽  
Maribel Navarro ◽  
...  

AbstractTrichomonas vaginalis is a protozoan parasite that causes trichomoniasis in humans, the most prevalent non-viral sexually transmitted disease (STD). Imidazole compounds are used for the treatment of trichomoniasis, and metronidazole is the most commonly prescribed. However, these compounds can lead to parasite resistance and unwanted side effects. Therefore, there is a need for an alternative treatment for this disease. Here, we explored the potential of clotrimazole (CTZ) and zinc compounds, as well as CTZ complexed with zinc salts ([1] acetate [Zn(CTZ)2(Ac)2] and [2] a chloride [Zn(CTZ)2Cl2] complexes) against T. vaginalis. We synthesized the zinc complexed CTZ compounds and determined their concentration values that inhibited parasite growth by 50% (IC50). We used scanning and transmission electron microscopy to visualize the ultrastructural alterations induced by CTZ and their zinc complexes. The incubation of the parasites with [Zn(CTZ)2(Ac)2] complex inhibited their growth, yielding an IC50 of 4.9 µm. Moreover, there were changes in the shape of treated parasites, including the formation of surface projections that subsequently detached from the cell, in addition to changes in the hydrogenosomes, endoplasmic reticulum and Golgi complex. We found [Zn(CTZ)2(Ac)2] to be a highly effective compound against T. vaginalis in vitro, suggesting its potential utility as an alternative chemotherapy for trichomoniasis.


2018 ◽  
Author(s):  
Jully Pinheiro ◽  
Jacob Biboy ◽  
Waldemar Vollmer ◽  
Robert P. Hirt ◽  
Jeremy R. Keown ◽  
...  

AbstractTrichomonas vaginalisis a human eukaryotic pathogen and the causative agent of trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. This extracellular protozoan parasite is intimately associated with the human vaginal mucosa and microbiota but key aspects of the complex interactions between the parasite and the vaginal bacteria remain elusive. We report thatT. vaginalishas acquired, by lateral gene transfer from bacteria, genes encoding peptidoglycan hydrolases of the NlpC/P60 family. Two of theT. vaginalisenzymes were active against bacterial peptidoglycan, retaining the active site fold and specificity as DL-endopeptidases. The endogenous NlpC/P60 genes are transcriptionally up regulated inT. vaginaliswhen in the presence of bacteria. The over-expression of an exogenous copy produces a remarkable phenotype where the parasite is capable of competing out bacteria from mixed cultures, consistent with the biochemical activity of the enzymein vitro. Our study highlights the relevance of the interactions of this eukaryotic pathogen with bacteria, a poorly understood aspect on the biology of this important human parasite.Author summaryTrichomonas vaginalisis a protozoan parasite that causes a very common sexually transmitted disease known as trichomoniasis. This extracellular parasite resides in the vagina where it is in close association with the mucosa and the local microbiota. Very little is known about the nature of the parasite-bacteria interactions. Here, we report that this parasite had acquired genes from bacteria which retained their original function producing active enzymes capable of degrading peptidoglycan, a polymer that is chemically unique to the cell envelope of bacteria. Our results indicate that these enzymes help the parasite compete out bacteria in mixed cultures. These observations suggest that these enzymes may be critical for the parasite to establish infection in the vagina, a body site that is densely colonised with bacteria. Our study further highlights the importance of understanding the interactions between pathogens and microbiota, as the outcomes of these interactions are increasingly understood to have important implications on health and disease.


2019 ◽  
Vol 7 (10) ◽  
pp. 97
Author(s):  
Divakaruni ◽  
Mahabir ◽  
Orrett ◽  
Adidam ◽  
Venkata ◽  
...  

Trichomoniasis is the most common non-viral sexually transmitted disease (STD) globally and yet is not a reportable disease. Trichomonas vaginalis is an important source of reproductive morbidity and may increase risk of acquisition and transmission of human immunodeficiency viruses (HIV). The World Health Organization (WHO) and the Control Disease Center (CDC) recommend various regimens of nitroimidazole s for treatment. The common nitroimidazoles used for trichomoniasis are metronidazole and tinidazole, which vary in their cost, efficacy, and side effect profile. It is relevant to study these factors for better management of the patients. This study aimed to compare and study the efficacy, compliance of various treatment regimens, their outcomes, and side-effects for trichomoniasis, among STI clinic attendees in Trinidad. A clinical trial study was designed, and after obtaining the informed consent, a routine clinical examination was conducted and the swabs for trichomoniasis tests were collected for diagnosis from the 692 participants. Out of 692 participants, 82 patients with positive diagnosis of Trichomonas infection were treated according to the patient’s choice, using different drug regimens. Compliance to treatment, side effects, and outcome were evaluated. The prevalence of trichomoniasis in the population attending our STI clinic is 11.9% and prevalence of HIV is 9%. Of the total 82 participants for the treatment, 80% were females; nearly 90% of the patients belonged to age group 15–45 years, and over 60% were below 30 years. Among those diagnosed for Trichomonas vaginalis, 14.6% had coexistent HIV infection. The compliance with respect to single dose treatment was significantly better than the long-duration oral regimen and has a significant relation with side effects of the treatment. The outcome is generally better and comparable and shows no significant difference between different treatment regimens used in the study. Metronidazole and tinidazole are commonly used drugs in various regimens. Compliance is better with those treated with tinidazole and metronidazole single dose than with other groups. Outcome is comparable between these regimens, especially when combined with other important factors like abstinence and treatment of the partners. The treatment regimens mainly differed in the compliance side effects profile and duration of therapy, which suggests that to improve the compliance of the drugs with fewer side effects, short course regimen would be a preferred choice.


2000 ◽  
Vol 38 (8) ◽  
pp. 3004-3009 ◽  
Author(s):  
Lauren J. Snipes ◽  
Pascale M. Gamard ◽  
Elizabeth M. Narcisi ◽  
C. Ben Beard ◽  
Tovi Lehmann ◽  
...  

Trichomonas vaginalis, the causative agent for human trichomoniasis, is a problematic sexually transmitted disease mainly in women, where it may be asymptomatic or cause severe vaginitis and cervicitis. Despite its high prevalence, the genetic variability and drug resistance characteristics of this organism are poorly understood. To address these issues, genetic analyses were performed on 109 clinical isolates using three approaches. First, two internal transcribed spacer (ITS) regions flanking the 5.8S subunit of the ribosomal DNA gene were sequenced. The only variation was a point mutation at nucleotide position 66 of the ITS1 region found in 16 isolates (14.7%). Second, the presence of a 5.5-kb double-stranded RNAT. vaginalis virus (TVV) was assessed. TVV was detected in 55 isolates (50%). Finally, a phylogenetic analysis was performed based on random amplified polymorphic DNA data. The resulting phylogeny indicated at least two distinct lineages that correlate with the presence of TVV. A band-sharing index indicating relatedness was created for different groups of isolates. It demonstrated that isolates harboring the virus are significantly more closely related to each other than to the rest of the population, and it indicated a high level of relatedness among isolates with in vitro metronidazole resistance. This finding is consistent with the hypothesis that drug resistance toT. vaginalis resulted from a single or very few mutational events. Permutation tests and nonparametric analyses showed associations between metronidazole resistance and phylogeny, the ITS mutation, and TVV presence. These results suggest the existence of genetic markers with clinical implications for T. vaginalisinfections.


1996 ◽  
Vol 40 (5) ◽  
pp. 1121-1125 ◽  
Author(s):  
E M Narcisi ◽  
W E Secor

Trichomonas vaginalis is a common sexually transmitted protozoan parasite. Although often considered simply a nuisance infection, T. vaginalis has been implicated in premature rupture of placental membranes and increases in the risk of acquiring human immunodeficiency virus. Metronidazole, a 5-nitroimidazole, is currently the drug of choice to treat T. vaginalis infection. Because some patients have severe reactions to metronidazole and others are infected with metronidazole-resistant T. vaginalis, we were prompted to investigate alternative therapies. Tinidazole, another 5-nitroimidazole used in other countries to treat T. vaginalis infections, and furazolidone, a nitrofuran presently used to treat giardiasis and infections with some anaerobic enteric bacteria, were investigated for effectiveness against 9 metronidazole-susceptible and 12 metronidazole-resistant T. vaginalis patient isolates. The in vitro aerobic and anaerobic minimum lethal concentrations (MLC) and the time for drug efficacy were determined. Tinidazole killed the metronidazole-susceptible isolates at a low MLC but was effective against only 4 of the 12 metronidazole-resistant isolates. In contrast, furazolidone was effective at a low MLC for all isolates. When tinidazole was effective, it required > 6 h to kill trichomonads. However, furazolidone killed both metronidazole-susceptible and resistant trichomonads within 2 to 3 h of exposure. These data suggest that furazolidone may be a good candidate for treating metronidazole-resistant trichomoniasis and that further investigation of this drug is warranted.


2015 ◽  
Vol 59 (11) ◽  
pp. 6891-6903 ◽  
Author(s):  
Kuo-Yang Huang ◽  
Fu-Man Ku ◽  
Wei-Hung Cheng ◽  
Chi-Ching Lee ◽  
Po-Jung Huang ◽  
...  

ABSTRACTTrichomonas vaginaliscolonizes the human urogenital tract and causes trichomoniasis, the most common nonviral sexually transmitted disease. Currently, 5-nitroimidazoles are the only recommended drugs for treating trichomoniasis. However, increased resistance of the parasite to 5-nitroimidazoles has emerged as a highly problematic public health issue. Hence, it is essential to identify alternative chemotherapeutic agents against refractory trichomoniasis. Tetracycline (TET) is a broad-spectrum antibiotic with activity against several protozoan parasites, but the mode of action of TET in parasites remains poorly understood. Thein vitroeffect of TET on the growth ofT. vaginaliswas examined, and the mode of cell death was verified by various apoptosis-related assays. Next-generation sequencing-based RNA sequencing (RNA-seq) was employed to elucidate the transcriptome ofT. vaginalisin response to TET. We show that TET has a cytotoxic effect on both metronidazole (MTZ)-sensitive and -resistantT. vaginalisisolates, inducing some features resembling apoptosis. RNA-seq data reveal that TET significantly alters the transcriptome via activation of specific pathways, such as aminoacyl-tRNA synthetases and carbohydrate metabolism. Functional analyses demonstrate that TET disrupts the hydrogenosomal membrane potential and antioxidant system, which concomitantly elicits a metabolic shift toward glycolysis, suggesting that the hydrogenosomal function is impaired and triggers cell death. Collectively, we providein vitroevidence that TET is a potential alternative therapeutic choice for treating MTZ-resistantT. vaginalis. The in-depth transcriptomic signatures inT. vaginalisupon TET treatment presented here will shed light on the signaling pathways linking to cell death in amitochondriate organisms.


2017 ◽  
Vol 56 (2) ◽  
Author(s):  
Jane R. Schwebke ◽  
C. A. Gaydos ◽  
T. Davis ◽  
J. Marrazzo ◽  
D. Furgerson ◽  
...  

ABSTRACT Trichomoniasis is the most prevalent curable sexually transmitted disease (STD). It has been associated with preterm birth and the acquisition and transmission of HIV. Recently, nucleic acid amplification tests (NAAT) have been FDA cleared in the United States for detection of Trichomonas vaginalis in specimens from both women and men. This study reports the results of a multicenter study recently conducted using the Xpert TV (T. vaginalis) assay to test specimens from both men and women. On-demand results were available in as little as 40 min for positive specimens. A total of 1,867 women and 4,791 men were eligible for inclusion in the analysis. In women, the performance of the Xpert TV assay was compared to the patient infected status (PIS) derived from the results of InPouch TV broth culture and Aptima NAAT for T. vaginalis. The diagnostic sensitivities and specificities of the Xpert TV assay for the combined female specimens (urine samples, self-collected vaginal swabs, and endocervical swabs) ranged from 99.5 to 100% and 99.4 to 99.9%, respectively. For male urine samples, the diagnostic sensitivity and specificity were 97.2% and 99.9%, respectively, compared to PIS results derived from the results of broth culture for T. vaginalis and bidirectional gene sequencing of amplicons. Excellent performance characteristics were seen using both female and male specimens. The ease of using the Xpert TV assay should result in opportunities for enhanced screening for T. vaginalis in both men and women and, hopefully, improved control of this infection.


Open Biology ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 200192 ◽  
Author(s):  
Suhani B. Bhakta ◽  
Jose A. Moran ◽  
Frances Mercer

Trichomoniasis is the third most common sexually transmitted infection in humans and is caused by the protozoan parasite, Trichomonas vaginalis ( Tv ). Pathogenic outcomes are more common in women and generally include mild vaginitis or cervicitis. However, more serious effects associated with trichomoniasis include adverse reproductive outcomes. Like other infectious agents, pathogenesis from Tv infection is predicted to be the result of both parasite and host factors. At the site of infection, neutrophils are the most abundant immune cells present and probably play key roles in both parasite clearance and inflammatory pathology. Here, we discuss the evidence that neutrophils home to the site of Tv infection, kill the parasite, and that in some circumstances, parasites possibly evade neutrophil-directed killing. In vitro , the parasite is killed by neutrophils using a novel antimicrobial mechanism called trogocytosis, which probably involves both innate and adaptive immunity. While mechanisms of evasion are mostly conjecture at present, the persistence of Tv infections in patients argues strongly for their existence. Additionally, many strains of Tv harbour microbial symbionts Mycoplasma hominis or Trichomonasvirus , which are both predicted to impact neutrophil responses against the parasite. Novel research tools, especially animal models, will help to reveal the true outcomes of many factors involved in neutrophil- Tv interactions during trichomoniasis.


2013 ◽  
Vol 57 (6) ◽  
pp. 2476-2484 ◽  
Author(s):  
Natalia Mallo ◽  
Jesús Lamas ◽  
José M. Leiro

ABSTRACTMetronidazole (MDZ) and related 5-nitroimidazoles are the recommended drugs for treatment of trichomoniasis, a sexually transmitted disease caused by the protozoan parasiteTrichomonas vaginalis. However, novel treatment options are needed, as recent reports have claimed resistance to these drugs inT. vaginalisisolates. In this study, we analyzed for the first time thein vitroeffects of the natural polyphenol resveratrol (RESV) onT. vaginalis. At concentrations of between 25 and 100 μM, RESV inhibited thein vitrogrowth ofT. vaginalistrophozoites; doses of 25 μM exerted a cytostatic effect, and higher doses exerted a cytotoxic effect. At these concentrations, RESV caused inhibition of the specific activity of a 120-kDa [Fe]-hydrogenase (Tvhyd). RESV did not affect Tvhyd gene expression and upregulated pyruvate-ferredoxin oxidoreductase (a hydrogenosomal enzyme) gene expression only at a high dose (100 μM). At doses of 50 to 100 μM, RESV also caused overexpression of heat shock protein 70 (Hsp70), a protective protein found in the hydrogenosome ofT. vaginalis. The results demonstrate the potential of RESV as an antiparasitic treatment for trichomoniasis and suggest that the mechanism of action involves induction of hydrogenosomal dysfunction. In view of the results, we propose hydrogenosomal metabolism as a key target in the design of novel antiparasitic drugs.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Ana S. Oliveira ◽  
Ana R. Ferrão ◽  
Filomena Martins Pereira ◽  
José Martinez-de-Oliveira ◽  
Ana Palmeira-de-Oliveira

AbstractThe protozoan Trichomonas vaginalis (TV) is responsible for trichomonosis, a sexually transmitted disease (STD) with a significant incidence worldwide. This infection is one of the most common non-viral STDs, representing almost 50% of all curable STDs. Trichomonosis has an incidence of 180 million new cases worldwide. Nowadays, the ‘gold standard’ for TV diagnosis remains the use of in vitro cultures combined with daily visual microscopic evaluations, which is a time-consuming and low sensitive method. Recent diagnostic methodologies include imunocromatographic assays and molecular biology techniques. The use of the latter has improved enormously the sensitivity and specificity of TV diagnosis, despite, however, none being unable to identify the presence of live parasites. By understanding the biology, the pathogenesis, the proteomic profile and its relation with the parasite’s virulence mechanisms, new possibilities towards diagnostic techniques can arise. This review covers various important aspects of vaginal trichomonosis from the parasite’s biology and virulence to recent improvements in diagnostic techniques and also metabolic and protein discoveries.


Sign in / Sign up

Export Citation Format

Share Document