scholarly journals Analysis of the efficiency of the in-cylinder catalyst to reduce exhaust emissions during the cold start combustion engine

2019 ◽  
Vol 178 (3) ◽  
pp. 38-45
Author(s):  
Jerzy MERKISZ ◽  
Monika ANDRYCH-ZALEWSKA ◽  
Jacek PIELECHA

The article concerns the use of an in-cylinder catalyst that allows reducing the exhaust emissions during diesel engine operation. This is an additional method of exhaust emission reduction – however, the active component is placed inside the combustion chamber – hence much closest to the combustion process. This allows reducing the emissions at the very source (catalyst applied on the glow plugs). Such solutions are necessary because the reduction of exhaust emissions from vehicles is a key aspect of reducing the negative impact of transport on the environment.

2021 ◽  
pp. 146808742110442
Author(s):  
Sebastian Welscher ◽  
Mohammad Hossein Moradi ◽  
Antonino Vacca ◽  
Peter Bloch ◽  
Michael Grill ◽  
...  

Due to increasing climate awareness and the introduction of much stricter exhaust emission legislation the internal combustion engine technology faces major challenges. Although the development and state of technology of internal combustion engines generally reached a very high level over the last years those need to be improved even more. Combining water injection with a diesel engine, therefore, seems to be the next logical step in developing a highly efficient drive train for future mobility. To investigate these potentials, a comprehensive evaluation of water injection on the diesel engine was carried out. This study covers >560 individual operating points on the test bench. The tests were carried out on a single-cylinder derived from a Euro 6d four-cylinder passenger car with the port water injection. Furthermore, a detailed pressure trace analysis (PTA) was performed to evaluate various aspects regarding combustion, emission, etc. The results show no significant effects of water injection on the combustion process, but great potential for NOx reduction. It has been shown that with the use of water injection at water-to-fuel rates of 25%, 50%, and 100%, NOx reduction without deterioration of soot levels can be achieved in 62%, 40%, and 20% of the experiments, respectively. Furthermore, water injection in combination with EGR offers additional reduction in NOx emissions.


2014 ◽  
Vol 660 ◽  
pp. 457-461 ◽  
Author(s):  
Amir Aziz ◽  
Wong Chung Siong ◽  
Rizalman Mamat ◽  
Ftwi Yohaness Hagos

An emulsion fuels is one of an alternative method that have been used to reduce exhaust emission from diesel engine. However, there were still not properly explored on the emulsified biodiesel. In this work, the effects of water concentration in palm oil diesel emulsions (POD) [POD is palm oil Methyl esters] on exhaust emissions of a 4-cylinder diesel engine were investigated. The engine speed was set at 2500 rpm and loads at 20, 40 and 60 %. Emulsions were prepared using ultrasound method by mixing POD fuel with 5, 10 and 20 % of water by volume. Results of exhaust emissions for POD and their emulsion were compared with OD fuel. The experimental results show that, the increasing water concentration in POD decrease the NOx and PM simultaneously. POD emulsions is a promising alternative fuels for reducing emissions from diesel engines without any engine modifications.


Author(s):  
Awadhesh Kumar Tiwari ◽  
R.K. Mandloi

In present scenario clean technologies with lesser fuel consumption for better air quality is needed from automobile sector. There is need to maintain regulatory emission standards, approaches to minimize green house gases. Therefore, it is highly required to address two major challenges, better engine efficiency with minimum exhaust emissions. Excessive work has been done on fuel improvement, combustion process and exhaust emission on diesel engine advancement since last 40 years. This review covers a comprehensive summary of the existing details related to technology advancement and its effect on pollution control. The investigations have focused on determination of the best operating conditions like overview of modified fuel, particulate emission effect and control strategies which include engine modifications and with advanced combustion strategies vehicular particulate exhaust emissions can be significantly controlled.


2018 ◽  
Vol 44 ◽  
pp. 00141 ◽  
Author(s):  
Jacek Pielecha ◽  
Monika Andrych-Zalewska

The article discusses the use of an internal catalyst, which allows to reduce the emission of harmful compounds during internal combustion engine operation. This is a type of exhaust aftertreatment system; however, its placement inside the combustion chamber, and thus closest to the combustion process, allows reducing the pollution at the source (the catalyst was sprayed on the glow plugs). This is necessary because vehicle pollution reduction is a key aspect of reducing the negative environmental impact of transport. The presented research results are a part of a wider research scheme, on the evaluation of the internal catalyst impact in various engine operating conditions – starting from static tests (on an engine dynamometer), through dynamic dynamometer tests, and ending with vehicle road tests in real driving conditions. The use of an internal catalyst during dynamic tests results in a few percent reduction in the mass of carbon monoxide, hydrocarbons, carbon dioxide and the number of particulates in the considered measurement test. It is technically possible to introduce this kind of a technical solution in most vehicles with Diesel engines, thus resulting in improved ecological properties of internal combustion engines.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Manuel Dorsch ◽  
Jens Neumann ◽  
Christian Hasse

In this work, the application of a phenomenological model to determine engine-out hydrocarbon (HC) emissions in driving cycles is presented. The calculation is coupled to a physical-based simulation environment consisting of interacting submodels of engine, vehicle, and engine control. As a novelty, this virtual calibration methodology can be applied to optimize the energy conversion inside a spark-ignited (SI) internal combustion engine at transient operation. Using detailed information about the combustion process, the main origins and formation mechanisms of unburned HCs like piston crevice, oil layer, and wall quenching are considered in the prediction, as well as the in-cylinder postoxidation. Several parameterization approaches, especially, of the oil layer mechanism are discussed. After calibrating the emission model to a steady-state engine map, the transient results are validated successfully against measurements of various driving cycles based on different calibration strategies of engine operation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Saša Milojević ◽  
Radivoje Pešić

Compression ratio has very important influence on fuel economy, emission, and other performances of internal combustion engines. Application of variable compression ratio in diesel engines has a number of benefits, such as limiting maximal in cylinder pressure and extended field of the optimal operating regime to the prime requirements: consumption, power, emission, noise, and multifuel capability. The manuscript presents also the patented mechanism for automatic change engine compression ratio with two-piece connecting rod. Beside experimental research, modeling of combustion process of diesel engine with direct injection has been performed. The basic problem, selection of the parameters in double Vibe function used for modeling the diesel engine combustion process, also performed for different compression ratio values. The optimal compression ratio value was defined regarding minimal fuel consumption and exhaust emission. For this purpose the test bench in the Laboratory for Engines of the Faculty of Engineering, University of Kragujevac, is brought into operation.


2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 395
Author(s):  
Jeongwoo Song ◽  
Han Ho Song

The exergy destruction due to the irreversibility of the combustion process has been regarded as one of the key losses of an internal combustion engine. However, there has been little discussion on the direct relationship between the exergy destruction and the work output potential of an engine. In this study, an analytical approach is applied to discuss the relationship between the exergy destruction and efficiency by assuming a simple thermodynamic system simulating an internal combustion engine operation. In this simplified configuration, the exergy destruction during the combustion process is mainly affected by the temperature, which supports well-known facts in the literature. However, regardless of this exergy destruction, the work potential in this simple engine architecture is mainly affected by the pressure during the combustion process. In other words, if these pressure conditions are the same, increasing the system temperature to reduce the exergy destruction does not lead to an increase in the expansion work; rather, it only results in an increase in the remaining exergy after expansion. In a typical internal combustion engine, temperatures before combustion timing must be increased to reduce the exergy destruction, but increasing pressure before combustion timing is a key strategy to increase efficiency.


2017 ◽  
Vol 865 ◽  
pp. 224-229
Author(s):  
Xiao Wang

It described that the main harmful exhaust emissions in the flameproof diesel engine of the flameproof vehicle with the rubber wheeles in the coal mine ,and the harm of the work personnel health in underground, Introduces the technology and method of controlling the exhaust emission of the coal mine explosion proof diesel engine, Points out the problems of control technology and insufficiency in exhaust emission, And puts forward the thought and development direction controlling exhaust emissions technology of the explosion proof diesel engine of coal mine on future.


Sign in / Sign up

Export Citation Format

Share Document