scholarly journals ANALISA PENGOPERASIAN 1 CWP DAN 2 CWP PADA COOLING WATER SYSTEM PLTU ASAM ASAM UNIT 4

Author(s):  
Juni Eko Hartanto ◽  
Mastiadi Tamjidillah

Electric power is used to support daily life, therefore electrical energy must be continually developed considering the increasing need for this energy. Therefore it is necessary to do preventive, corrective maintenance and efforts to optimize the generating unit such as savings in the production process, one of which is by analyzing the operation of a Circulating Water Pump CWP at the Unit 4 Acid-Acid Power Plant. The formulation of the problem in this study is that in the manufacturer's design for 65 MW full load 2 CWP pumps are needed, this can be seen from the pump specification data, but in fact with only a Circulating Water Pump CWP can produce a full load of 65 MW.

2012 ◽  
Vol 608-609 ◽  
pp. 1262-1265
Author(s):  
Yong Li ◽  
Jia Bei Li

The existing optimized operation of circulating water system does not suit piping-main scheme circulating water system with double-pressure condenser. The optimum vacuum of piping-main scheme should be defined as the vacuum which makes the difference between the sum of the two units’ added electric power and the circulating water pump power maximum. The plan of optimized operation of piping-main scheme circulating water system which is based on this kind of optimum vacuum was put forward. And a specific example of 2×660MW units was given, the power plant’s optimized operation mode of the whole circulating water system at difference conditions was obtained. The results show that the optimized scheme is correct and suit the piping-main scheme circulating water system, and the optimized operation can well improve the steam turbine economy.


2002 ◽  
Vol 2 ◽  
pp. 81-105 ◽  
Author(s):  
C.P. Ehrler ◽  
J.R. Steinbeck ◽  
E.A. Laman ◽  
J.B. Hedgepeth ◽  
J.R. Skalski ◽  
...  

A study to determine the effects of entrainment by the Diablo Canyon Power Plant (DCPP) was conducted between 1996 and 1999 as required under Section 316(b) of the Clean Water Act. The goal of this study was to present the U.S. Environmental Protection Agency (EPA) and Central Coast Regional Water Quality Control Board (CCRWQCB) with results that could be used to determine if any adverse environmental impacts (AEIs) were caused by the operation of the plant’s cooling-water intake structure (CWIS). To this end we chose, under guidance of the CCRWQCB and their entrainment technical working group, a unique approach combining three different models for estimating power plant effects: fecundity hindcasting (FH), adult equivalent loss (AEL), and the empirical transport model (ETM). Comparisons of the results from these three approaches provided us a relative measure of confidence in our estimates of effects. A total of 14 target larval fish taxa were assessed as part of the DCPP 316(b). Example results are presented here for the kelp, gopher, and black-and-yellow (KGB) rockfish complex and clinid kelpfish. Estimates of larval entrainment losses for KGB rockfish were in close agreement (FH is approximately equals to 550 adult females per year, AEL is approximately equals to 1,000 adults [male and female] per year, and ETM = larval mortality as high as 5% which could be interpreted as ca. 2,600 1 kg adult fish). The similar results from the three models provided confidence in the estimated effects for this group. Due to lack of life history information needed to parameterize the FH and AEL models, effects on clinid kelpfish could only be assessed using the ETM model. Results from this model plus ancillary information about local populations of adult kelpfish suggest that the CWIS might be causing an AEI in the vicinity of DCPP.


2011 ◽  
Vol 99-100 ◽  
pp. 350-353
Author(s):  
Xiao Bing Sun ◽  
Xu Bin Qiao

As the largest unit capacity of nuclear power plant at present, the flow conduit of circulating water pump in EPR1750 nuclear power plant is a volute conduit, which is a cast-in-situ conceret structure with complexly gradual change cavity. Therefore, the hydraulic efficiency of circulating water pump is not only related with the design of pump leaves, but also closely related to the design of volute and the complicated spatial type of intake and outtake conduits. With the pump leaves and the intake and outtake conduits of conceret volute as the research model, based on computational fluid dynamics (CFD)and the three dimensional Reynolds averaged Navier-Stokes equations, an analytic model suitable for computation is established to simulate the three-dimensional steady flow in the whole pumping system under different operating modes. By use of the commercial fluid-computation softer ANSYS, the distribution of basic physic quantities in the fluid field inside the pump and the conduits is obtained. The analysis and prediction of the performance of pump system are made, and the spatial type design of intake and outtake conduits is evaluated. The calculation results can be referenced to improve the design of pump systems in the similar projects.


2018 ◽  
Vol 159 ◽  
pp. 02027 ◽  
Author(s):  
Abdul Hamid ◽  
Sri Nugroho ◽  
Gunawan Dwi Haryadi ◽  
Khaeroman

Pump shafts are generally exposed to the liquid being pumped either on a continual basis or at certain locations along the length of the shaft. The shaft material is austenitic stainless steel, description ASTM AU 79 TY 316. The purpose of this study is to determine the failure of the water pump shaft used in the power plant. Metallography is the study of structure metal shaft can used as a means for CWP metal pelleting (Circulating Water Pump), for the purpose of damaged or deeply degraded areas. SEM test is used to know the beginning of the crack (crack initiation). EDS test is used to chemical composition and Vikers hardness test is also used to know the hardness material. These three tests to support in analyzing the failure of the pump shaft. The conclusion of this failure analysis is the shaft material has porosity. Fatigue cracking comes from the outer surface area.


2013 ◽  
Vol 726-731 ◽  
pp. 1940-1944 ◽  
Author(s):  
Liang Shen ◽  
Han Xiao ◽  
Wan Qiu Yang ◽  
De Ren Miao ◽  
Xiao Ming Li

Using coagulation and sedimentation process in the advanced treatment of urban secondary effluent which can be recycled to circulating cooling water system in power plant is only perform well on CODCrand turbidity removal. But the concentrations of organic matter and NH3in effluent can not meet the requirements of circulating cooling water. Therefore, in this study, the feasibility of biological aerated filter (BAF) as a pretreatment enhancing coagulation and sedimentation process was discussed. Achieved by controlling the two operating modes: (1) secondary effluentcoagulation and sedimentationeffluent; (2) secondary effluent BAFcoagulation and sedimentation effluent.The results show that the BAF pretreatment removes ammonia nitrogen effectively, and the turbidity and CODCrof effluent of BAF-coagulation sedimentation process is much lower than individual coagulation and sedimentation process. The final effluent qualities meet the requirements of circulating cooling water system in power plant.


2011 ◽  
Vol 347-353 ◽  
pp. 931-936
Author(s):  
Mo Jie Sun ◽  
Hong Dan Shi ◽  
Sheng Zheng

Microorganisms in circulating water of power plant bring great harm to cooling water system. It not only affects the effect of heat transfer, but also would lead to corrosion of heat exchanger, in seriously would result in shutdown. Now the plant uses the bactericide to treat with the microbial fouling generally, and a variety of fungicides have been developed. However, the long-term usage of fungicide will make the bacteria appear resistance, which greatly limits the application of such measures. This paper overviewed different resistance mechanisms of Pseudomonas, sulfate-reducing bacteria, iron bacteria and slime forming bacteria in the microbial fouling to bactericide and put forward some solutions.


2013 ◽  
Vol 732-733 ◽  
pp. 382-386
Author(s):  
Ni Zhang Xiao ◽  
Nan Zhang Xiao ◽  
Long Wu Wen ◽  
Rui Ju Zhao ◽  
Chun Lei Zhang

The effects of anti-scale, anti-corrosion and disinfection of circulating cooling water with electro-magnetic treatment and chemical treatment in the laboratory are compared. The applications of electro-magnetic treatment in power plants are summarized and discussed. The results of both experiments and applications in power plants show that the electro-magnetic treatment can be used in particular conditions, but the development of electro-magnetic treatment technology is immature. This technology used in circulating cooling water system in power plants should be further proved by more experiments and field applications.


Sign in / Sign up

Export Citation Format

Share Document