scholarly journals The thermodynamics of collapsars

Author(s):  
Trevor W. Marshall

This article argues that there is a consistent description of gravitationally collapsed bodies, including neutron stars above the Tolman-Oppenheimer-Volkoff mass and also supermassive galactic centres, according to which collapse stops before the object reaches its gravitational radius, the density reaching a maximum close to the surface and then decreasing towards the centre. Models for such shell-like objects have been constructed using classic formulations found in the 1939 articles of Oppenheimer-Volkoff and Oppenheimer-Snyder. It was possible to modify the conclusions of the first article by changing the authors’ boundary conditions at r = 0. In the second case we find that the authors’ solution of the field equations needs no changes, but that the choice of their article’s title led many of their successors to believe that it supports the black-hole hypothesis. However, it is easily demonstrated that their final density distribution accords with the shell models found in our articles. Because black holes, according to many formulations, "have no hair", their thermodynamics is rather simple. The kind of collapsar which our models describe are more like main-sequence stars; they have spatiotemporal distributions of pressure, density and temperature, that is they have hair. In this article we shall concentrate on the dynamics of the Oppenheimer-Snyder collapsar; both pressure and temperature are everywhere zero, so there can be no thermodynamics. Only in the time independent case of Oppenheimer-Volkoff type models is it currently feasible to consider some thermodynamic implications; here some valuable new insights are obtained through the incorporation of the Oppenheimer-Snyder dynamics.

2019 ◽  
Vol 489 (1) ◽  
pp. 727-737 ◽  
Author(s):  
Giacomo Fragione ◽  
Nathan W C Leigh ◽  
Rosalba Perna ◽  
Bence Kocsis

ABSTRACT Stars passing too close to a black hole can produce tidal disruption events (TDEs), when the tidal force across the star exceeds the gravitational force that binds it. TDEs have usually been discussed in relation to massive black holes that reside in the centres of galaxies or lurk in star clusters. We investigate the possibility that triple stars hosting a stellar black hole (SBH) may be sources of TDEs. We start from a triple system made up of three main-sequence stars and model the supernova (SN) kick event that led to the production of an inner binary comprised of an SBH. We evolve these triples with a high-precision N-body code and study their TDEs as a result of Kozai–Lidov oscillations. We explore a variety of distributions of natal kicks imparted during the SN event, various maximum initial separations for the triples, and different distributions of eccentricities. We show that the main parameter that governs the properties of the SBH–MS binaries that produce a TDE in triples is the mean velocity of the natal kick distribution. Smaller σ’s lead to larger inner and outer semimajor axes of the systems that undergo a TDE, smaller SBH masses, and longer time-scales. We find that the fraction of systems that produce a TDE is roughly independent of the initial conditions, while estimate a TDE rate of $2.1\times 10^{-4}{\!-\!}4.7 \, \mathrm{yr}^{-1}$, depending on the prescriptions for the SBH natal kicks. This rate is almost comparable to the expected TDE rate for massive black holes.


2000 ◽  
Vol 24 (1) ◽  
pp. 259-276
Author(s):  
Edward F. Guinan ◽  
P. Szkody ◽  
M. Rodono ◽  
L. Bianchi ◽  
J.V. Clausen ◽  
...  

This is the last triennial report of Commission 42 for this millennium. A great deal has been accomplished in the study of Close Binary Stars (CBS) since the discovery of the first close (eclipsing) binary, Algol, in 1783 by John Goodricke. Now, over 10,000 CBS (most eclipsing variables) are known. More than 5000 of these CBS were discovered over the last several years alone! And many more are expected to be detected over the next few years. Most of these stars were found as spin-offs of microlensing surveys. Interestingly, nearly half of these stars are found outside our Galaxy, primarily in the Magellanic Clouds and M31. Every type of star is represented as a member of a close binary. These include main sequence (as well as pre-main sequence) stars, giants, and supergiants, with the entire possible range of of spectral types and masses represented. Moreover, “dying” stars and “dead” stars, such as white dwarfs, neutron stars, black holes, and, more recently, even brown dwarfs and giant planets (e.g., 51 Peg) have been found as members of close binary systems.


2019 ◽  
Vol 627 ◽  
pp. A92 ◽  
Author(s):  
E. Gourgoulhon ◽  
A. Le Tiec ◽  
F. H. Vincent ◽  
N. Warburton

Aims. We present the first fully relativistic study of gravitational radiation from bodies in circular equatorial orbits around the massive black hole at the Galactic center, Sgr A* and we assess the detectability of various kinds of objects by the gravitational wave detector LISA. Methods. Our computations are based on the theory of perturbations of the Kerr spacetime and take into account the Roche limit induced by tidal forces in the Kerr metric. The signal-to-noise ratio in the LISA detector, as well as the time spent in LISA band, are evaluated. We have implemented all the computational tools in an open-source SageMath package, within the Black Hole Perturbation Toolkit framework. Results. We find that white dwarfs, neutrons stars, stellar black holes, primordial black holes of mass larger than 10−4 M⊙, main-sequence stars of mass lower than ∼2.5 M⊙, and brown dwarfs orbiting Sgr A* are all detectable in one year of LISA data with a signal-to-noise ratio above 10 for at least 105 years in the slow inspiral towards either the innermost stable circular orbit (compact objects) or the Roche limit (main-sequence stars and brown dwarfs). The longest times in-band, of the order of 106 years, are achieved for primordial black holes of mass ∼10−3 M⊙ down to 10−5 M⊙, depending on the spin of Sgr A*, as well as for brown dwarfs, just followed by white dwarfs and low mass main-sequence stars. The long time in-band of these objects makes Sgr A* a valuable target for LISA. We also consider bodies on close circular orbits around the massive black hole in the nucleus of the nearby galaxy M 32 and find that, among them, compact objects and brown dwarfs stay for 103–104 years in LISA band with a one-year signal-to-noise ratio above ten.


1998 ◽  
Vol 11 (1) ◽  
pp. 28-41
Author(s):  
I.D. Novikov

Some 30 years ago very few scientists thought that black holes may really exist. Attention focussed on the black hole hypothesis after neutron stars had been discovered. It was rather surprising that astrophysicists immediately ‘welcomed’ black holes. They found their place not only in the remnants of supernova explosions but also in the nuclei of galaxies and quasars.


Author(s):  
Timothy Clifton

By studying objects outside our Solar System, we can observe star systems with far greater gravitational fields. ‘Extrasolar tests of gravity’ considers stars of different sizes that have undergone gravitational collapse, including white dwarfs, neutron stars, and black holes. A black hole consists of a region of space-time enclosed by a surface called an event horizon. The gravitational field of a black hole is so strong that anything that finds its way inside the event horizon can never escape. Other star systems considered are binary pulsars and triple star systems. With the invention of even more powerful telescopes, there will be more tantalizing possibilities for testing gravity in the future.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2072
Author(s):  
Wilson Alexander Rojas Castillo ◽  
Jose Robel Arenas Salazar

A Black Hole (BH) is a spacetime region with a horizon and where geodesics converge to a singularity. At such a point, the gravitational field equations fail. As an alternative to the problem of the singularity arises the existence of Exotic Compact Objects (ECOs) that prevent the problem of the singularity through a transition phase of matter once it has crossed the horizon. ECOs are characterized by a closeness parameter or cutoff, ϵ, which measures the degree of compactness of the object. This parameter is established as the difference between the radius of the ECO’s surface and the gravitational radius. Thus, different values of ϵ correspond to different types of ECOs. If ϵ is very big, the ECO behaves more like a star than a black hole. On the contrary, if ϵ tends to a very small value, the ECO behaves like a black hole. It is considered a conceptual model of the origin of the cutoff for ECOs, when a dust shell contracts gravitationally from an initial position to near the Schwarzschild radius. This allowed us to find that the cutoff makes two types of contributions: a classical one governed by General Relativity and one of a quantum nature, if the ECO is very close to the horizon, when estimating that the maximum entropy is contained within the material that composes the shell. Such entropy coincides with the Bekenstein–Hawking entropy. The established cutoff corresponds to a dynamic quantity dependent on coordinate time that is measured by a Fiducial Observer (FIDO). Without knowing the details about quantum gravity, parameter ϵ is calculated, which, in general, allows distinguishing the ECOs from BHs. Specifically, a black shell (ECO) is undistinguishable from a BH.


2019 ◽  
Vol 488 (4) ◽  
pp. 5340-5351 ◽  
Author(s):  
H Baumgardt ◽  
C He ◽  
S M Sweet ◽  
M Drinkwater ◽  
A Sollima ◽  
...  

ABSTRACT We compare the results of a large grid of N-body simulations with the surface brightness and velocity dispersion profiles of the globular clusters ω Cen and NGC 6624. Our models include clusters with varying stellar-mass black hole retention fractions and varying masses of a central intermediate-mass black hole (IMBH). We find that an $\sim 45\, 000$ M⊙ IMBH, whose presence has been suggested based on the measured velocity dispersion profile of ω Cen, predicts the existence of about 20 fast-moving, m > 0.5 M⊙, main-sequence stars with a (1D) velocity v > 60 km s−1 in the central 20 arcsec of ω Cen. However, no such star is present in the HST/ACS proper motion catalogue of Bellini et al. (2017), strongly ruling out the presence of a massive IMBH in the core of ω Cen. Instead, we find that all available data can be fitted by a model that contains 4.6 per cent of the mass of ω Cen in a centrally concentrated cluster of stellar-mass black holes. We show that this mass fraction in stellar-mass BHs is compatible with the predictions of stellar evolution models of massive stars. We also compare our grid of N-body simulations with NGC 6624, a cluster recently claimed to harbour a 20 000 M⊙ black hole based on timing observations of millisecond pulsars. However, we find that models with MIMBH > 1000 M⊙ IMBHs are incompatible with the observed velocity dispersion and surface brightness profile of NGC 6624, ruling out the presence of a massive IMBH in this cluster. Models without an IMBH provide again an excellent fit to NGC 6624.


2018 ◽  
Vol 14 (S346) ◽  
pp. 1-13
Author(s):  
Edward P. J. van den Heuvel

AbstractA summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.


2005 ◽  
Vol 192 ◽  
pp. 263-268
Author(s):  
V.V. Tikhomirov ◽  
S.E. Yuralevich

SummaryPrimordial black holes (PBHs) of microscopical size can completely absorb neutron stars (NSs) and white dwarfs (WDs) for less than the Hubble time. NS absorption is accompanied by inverse URCA process giving rise to emission of antineutrino. However considerable part of these antineutrino fails to escape NS being drawn into the growing black hole by accreting NS matter. The final stage of dense WD absorption is accompanied by 1051 erg neutrino burst able to ignite nuclear burning giving rise to supernova-like WD explosion.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950160
Author(s):  
M. B. Tataryn ◽  
M. M. Stetsko

Static black hole with the Power Maxwell invariant (PMI), Born–Infeld (BI), logarithmic (LN), exponential (EN) electromagnetic fields in three-dimensional spacetime with cosmological constant was studied. It was shown that the LN and EN fields represent the Born–Infeld type of nonlinear electrodynamics. It the framework of General Relativity the exact solutions of the field equations were obtained, corresponding thermodynamic functions were calculated and the [Formula: see text] criticality of the black holes in the extended phase-space thermodynamics was investigated.


Sign in / Sign up

Export Citation Format

Share Document