Outlier Modeling in Gear Bearing Using Autoencoder for Remaining Useful Life Prediction
In this paper, we introduce the Prognostics and Health Management of gear bearing system using autoencoder neural networks. Bearings and gears are the most common mechanical components in rotating machines, and their health conditions are of great concern in practice. This study presents an outlier modeling method for forecasting the gear bearing system failure using the health indicators constructed from mechanical signal processing and modeling. Outlier modeling aims to find patterns in data that are significantly different from what is defined as normal. In the unsupervised outlier modeling setting, prior labels about the anomalousness of data points are not available. In such cases, the most common techniques for scoring data points for outlyingness include distance-based methods density-based methods, and linear methods. The conventional outlier modeling methods have been used for a long time to detect anomalous observations in data. However, this paper shows that autoencoders are a very competitive technique compared to other existing methods. The developed method is demonstrated using the IMS bearing data from NASA Acoustics and Vibration Database.