scholarly journals Inactivated Platelet Lysate Supports Proliferation and Immunomodulant Characteristics Of Mesenchymal Stromal Cells in GMP Culture Condition

Author(s):  
Katia Mareschi ◽  
Sara Castiglia ◽  
Aloe Adamini ◽  
Deborah Rustichelli ◽  
Elena Marini ◽  
...  

For their clinical use Mesenchymal Stromal Cells (MSCs), isolated from bone marrow (BM-MSCs) are considered Advanced Therapy Medicinal Products (ATMP) and need to be produced according to Good Manufacturing Practice (GMP). Human platelet lysate (HPL) represents a good GMP-compliant alternative to animal serum and after pathogen inactivation with Psoralen was more efficient and safer to produce MSCs in GMP. In this study MSCs cultivated in FBS (FBS-MSC) or inactivated HPL (iHPL-MSC), were compared for their immunomodulant properties. In particular, the effects of MSCs on: 1)proliferation of total Lymphocytes (Ly) and on naïve T Ly subsets induced to differentiate versus Th1 and Th2 Ly; 2) the immunophenotype of different T cell subsets; 3)the cytokine release to verify Th1, Th2 and Th17 polarization were analyzed by using in vitro co-culture system. We observed that iHPL-MSCs showed the same immunomodulant properties observed in the FBS-MSCs co-cultures. Although, a more efficient effect on the increase of naïve T cells and, in the Th1 cytokine release related to iHPL was observed. This study confirms that iHPL, used as medium supplement, may be considered a good alternative to FBS for a GMP-compliant MSC expansion to preserve their immunomodulant proprieties.

Biomedicines ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 220
Author(s):  
Katia Mareschi ◽  
Sara Castiglia ◽  
Aloe Adamini ◽  
Deborah Rustichelli ◽  
Elena Marini ◽  
...  

Mesenchymal stromal cells (MSCs) isolated from bone marrow (BM-MSCs) are considered advanced therapy medicinal products (ATMPs) and need to be produced according to good manufacturing practice (GMP) in their clinical use. Human platelet lysate (HPL) is a good GMP-compliant alternative to animal serum, and we have demonstrated that after pathogen inactivation with psoralen, it was safer and more efficient to use psoralen in the production of MSCs following GMP guidelines. In this study, the MSCs cultivated in fetal bovine serum (FBS-MSC) or inactivated HPL (iHPL-MSC) were compared for their immunomodulatory properties. We studied the effects of MSCs on (1) the proliferation of total lymphocytes (Ly) and on naïve T Ly subsets induced to differentiate in Th1 versus Th2 Ly; (2) the immunophenotype of different T-cell subsets; (3) and the cytokine release to verify Th1, Th2, and Th17 polarization. These were analyzed by using an in vitro co-culture system. We observed that iHPL-MSCs showed the same immunomodulatory properties observed in the FBS-MSC co-cultures. Furthermore, a more efficient effect on the increase of naïve T- cells and in the Th1 cytokine release from iHPL was observed. This study confirms that iHPL, used as a medium supplement, may be considered a good alternative to FBS for a GMP-compliant MSC expansion, and also to preserve their immunomodulatory proprieties.


2020 ◽  
Author(s):  
Seda Ballikaya ◽  
Samar Sadeghi ◽  
Elke Niebergall-Roth ◽  
Laura Nimtz ◽  
Jens Frindert ◽  
...  

Abstract Background: Human dermal mesenchymal stromal cells (MSCs) expressing the ATP-binding cassette (ABC) efflux transporter ABCB5 represent an easily accessible MSC population that, based on preclinical and first-in-human data, holds significant promise to treat a broad spectrum of conditions associated not only with skin-related but also systemic inflammatory and/or degenerative processes.Methods: We developed and validated Good Manufacturing Practice-compliant expansion and manufacturing process by which ABCB5+ MSCs derived from surgical discard skin tissues are processed to an advanced-therapy medicinal product (ATMP) for clinical use. Enrichment for ABCB5+ MSCs is achieved in a three-step process involving plastic adherence selection, expansion in a highly efficient MSC-selecting medium and immunomagnetic isolation of the ABCB5+ cells from the mixed culture.Results: Product Quality Review data covering 324 cell expansions, 728 ABCB5+ MSC isolations, 66 ABCB5+ MSC batches and 85 final drug products reveal high process robustness and reproducible, reliable quality of the manufactured cell therapy product.Conclusion: We have successfully established an expansion and manufacturing process that enables the generation of homogenous ABCB5+ MSC populations of proven biological activity manufactured as a standardized, donor-independent, highly pure and highly functional off-the-shelf available ATMP, which is currently tested in multiple clinical trials.


2018 ◽  
Vol 205 (4) ◽  
pp. 226-239 ◽  
Author(s):  
Marijana Skific ◽  
Mirna Golemovic ◽  
Kristina Crkvenac-Gornik ◽  
Radovan Vrhovac ◽  
Branka Golubic Cepulic

Due to their ability to induce immunological tolerance in the recipient, mesenchymal stromal cells (MSCs) have been utilized in the treatment of various hematological and immune- and inflammation-mediated diseases. The clinical application of MSCs implies prior in vitro expansion that usually includes the use of fetal bovine serum (FBS). The present study evaluated the effect of different platelet lysate (PL) media content on the biological properties of MSCs. MSCs were isolated from the bone marrow of 13 healthy individuals and subsequently expanded in three different culture conditions (10% PL, 5% PL, 10% FBS) during 4 passages. The cells cultured in different conditions had comparable immunophenotype, clonogenic potential, and differentiation capacity. However, MSC growth was significantly enhanced in the presence of PL. Cultures supplemented with 10% PL had a higher number of cumulative population doublings in all passages when compared to the 5% PL condition (p < 0.03). Such a difference was also observed when 10% PL and 10% FBS conditions were compared (p < 0.005). A statistically significant difference in population doubling time was determined only between the 10% PL and 10% FBS conditions (p < 0.005). Furthermore, MSCs cultured in 10% PL were able to cause a 66.9% reduction of mitogen-induced lymphocyte proliferation. Three chromosome aberrations were detected in PL conditions. Since two changes occurred in the same do nor, it is possible they were donor dependent rather than caused by the culture condition. These findings demonstrate that a 10% PL condition enables a higher yield of MSCs within a shorter time without altering MSC properties, and should be favored over the 5% PL condition.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Seda Ballikaya ◽  
Samar Sadeghi ◽  
Elke Niebergall-Roth ◽  
Laura Nimtz ◽  
Jens Frindert ◽  
...  

Abstract Background Human dermal mesenchymal stromal cells (MSCs) expressing the ATP-binding cassette (ABC) efflux transporter ABCB5 represent an easily accessible MSC population that, based on preclinical and first-in-human data, holds significant promise to treat a broad spectrum of conditions associated not only with skin-related but also systemic inflammatory and/or degenerative processes. Methods We have developed a validated Good Manufacturing Practice-compliant expansion and manufacturing process by which ABCB5+ MSCs derived from surgical discard skin tissues are processed to an advanced-therapy medicinal product (ATMP) for clinical use. Enrichment for ABCB5+ MSCs is achieved in a three-step process involving plastic adherence selection, expansion in a highly efficient MSC-selecting medium, and immunomagnetic isolation of the ABCB5+ cells from the mixed culture. Results Product Quality Review data covering 324 cell expansions, 728 ABCB5+ MSC isolations, 66 ABCB5+ MSC batches, and 85 final drug products reveal high process robustness and reproducible, reliable quality of the manufactured cell therapy product. Conclusion We have successfully established an expansion and manufacturing process that enables the generation of homogenous ABCB5+ MSC populations of proven biological activity manufactured as a standardized, donor-independent, highly pure, and highly functional off-the-shelf available ATMP, which is currently tested in multiple clinical trials.


2020 ◽  
Author(s):  
Seda Ballikaya ◽  
Samar Sadeghi ◽  
Elke Niebergall-Roth ◽  
Laura Nimtz ◽  
Jens Frindert ◽  
...  

Abstract Background: Human dermal mesenchymal stromal cells (MSCs) expressing the ATP-binding cassette (ABC) efflux transporter ABCB5 represent an easily accessible MSC population that, based on preclinical and first-in-human data, holds significant promise to treat a broad spectrum of conditions associated not only with skin-related but also systemic inflammatory and/or degenerative processes.Methods: We have developed a validated Good Manufacturing Practice-compliant expansion and manufacturing process by which ABCB5+ MSCs derived from surgical discard skin tissues are processed to an advanced-therapy medicinal product (ATMP) for clinical use. Enrichment for ABCB5+ MSCs is achieved in a three-step process involving plastic adherence selection, expansion in a highly efficient MSC-selecting medium and immunomagnetic isolation of the ABCB5+ cells from the mixed culture.Results: Product Quality Review data covering 324 cell expansions, 728 ABCB5+ MSC isolations, 66 ABCB5+ MSC batches and 85 final drug products reveal high process robustness and reproducible, reliable quality of the manufactured cell therapy product.Conclusion: We have successfully established an expansion and manufacturing process that enables the generation of homogenous ABCB5+ MSC populations of proven biological activity manufactured as a standardized, donor-independent, highly pure and highly functional off-the-shelf available ATMP, which is currently tested in multiple clinical trials.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 411 ◽  
Author(s):  
Daniela Lisini ◽  
Sara Nava ◽  
Simona Frigerio ◽  
Simona Pogliani ◽  
Guido Maronati ◽  
...  

Mesenchymal stromal cells (MSCs) prepared as advanced therapies medicinal products (ATMPs) have been widely used for the treatment of different diseases. The latest developments concern the possibility to use MSCs as carrier of molecules, including chemotherapeutic drugs. Taking advantage of their intrinsic homing feature, MSCs may improve drugs localization in the disease area. However, for cell therapy applications, a significant number of MSCs loaded with the drug is required. We here investigate the possibility to produce a large amount of Good Manufacturing Practice (GMP)-compliant MSCs loaded with the chemotherapeutic drug Paclitaxel (MSCs-PTX), using a closed bioreactor system. Cells were obtained starting from 13 adipose tissue lipoaspirates. All samples were characterized in terms of number/viability, morphology, growth kinetics, and immunophenotype. The ability of MSCs to internalize PTX as well as the antiproliferative activity of the MSCs-PTX in vitro was also assessed. The results demonstrate that our approach allows a large scale expansion of cells within a week; the MSCs-PTX, despite a different morphology from MSCs, displayed the typical features of MSCs in terms of viability, adhesion capacity, and phenotype. In addition, MSCs showed the ability to internalize PTX and finally to kill cancer cells, inhibiting the proliferation of tumor lines in vitro. In summary our results demonstrate for the first time that it is possible to obtain, in a short time, large amounts of MSCs loaded with PTX to be used in clinical trials for the treatment of patients with oncological diseases.


Sign in / Sign up

Export Citation Format

Share Document