scholarly journals Structure and Biomechanics during Xylem Vessel Transdifferentiation in Arabidopsis thaliana

Author(s):  
Eleftheria Roumeli ◽  
Leah Ginsberg ◽  
Robin McDonald ◽  
Giada Spigolon ◽  
Rodinde Hendrickx ◽  
...  

Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system and nanoscale indentations through atomic force microscopy (AFM), in three different osmotic conditions. We introduce a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1715
Author(s):  
Eleftheria Roumeli ◽  
Leah Ginsberg ◽  
Robin McDonald ◽  
Giada Spigolon ◽  
Rodinde Hendrickx ◽  
...  

Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system in three different osmotic conditions. Atomic force microscopy (AFM) nanoscale indentations in water allow us to isolate the cell wall response. We propose a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.


2021 ◽  
Author(s):  
Laura Bacete ◽  
Julia Schulz ◽  
Timo Engelsdorf ◽  
Zdenka Bartosova ◽  
Lauri Vaahtera ◽  
...  

Plant cells can be distinguished from animal cells by their cell walls and high turgor pressure. Although changes in turgor and stiffness of cell walls seem coordinated, we know little about the mechanism responsible for coordination. Evidence has accumulated that plants, like yeast, have a dedicated cell wall integrity maintenance mechanism. This mechanism monitors the functional integrity of the wall and maintains it through adaptive responses when cell wall damage occurs during growth, development, and interactions with the environment. The adaptive responses include osmo-sensitive-induction of phytohormone production, defence responses as well as changes in cell wall composition and structure. Here, we investigate how the cell wall integrity maintenance mechanism coordinates changes in cell wall stiffness and turgor in Arabidopsis thaliana. We show that the production of abscisic acid (ABA), the phytohormone modulating turgor pressure and responses to drought, depends on the presence of a functional cell wall. We find that the cell wall integrity sensor THESEUS1 modulates mechanical properties of walls, turgor loss point and ABA biosynthesis. We identify RECEPTOR-LIKE PROTEIN 12 as a new component of cell wall integrity maintenance controlling cell wall damage-induced jasmonic acid production. Based on the results we propose that THE1 is responsible for coordinating changes in turgor pressure and cell wall stiffness.


2021 ◽  
Vol 119 (1) ◽  
pp. e2119258119
Author(s):  
Laura Bacete ◽  
Julia Schulz ◽  
Timo Engelsdorf ◽  
Zdenka Bartosova ◽  
Lauri Vaahtera ◽  
...  

Plant cells can be distinguished from animal cells by their cell walls and high-turgor pressure. Although changes in turgor and the stiffness of cell walls seem coordinated, we know little about the mechanism responsible for coordination. Evidence has accumulated that plants, like yeast, have a dedicated cell wall integrity maintenance mechanism. It monitors the functional integrity of the wall and maintains integrity through adaptive responses induced by cell wall damage arising during growth, development, and interactions with the environment. These adaptive responses include osmosensitive induction of phytohormone production, defense responses, as well as changes in cell wall composition and structure. Here, we investigate how the cell wall integrity maintenance mechanism coordinates changes in cell wall stiffness and turgor in Arabidopsis thaliana. We show that the production of abscisic acid (ABA), the phytohormone-modulating turgor pressure, and responses to drought depend on the presence of a functional cell wall. We find that the cell wall integrity sensor THESEUS1 modulates mechanical properties of walls, turgor loss point, ABA biosynthesis, and ABA-controlled processes. We identify RECEPTOR-LIKE PROTEIN 12 as a component of cell wall integrity maintenance–controlling, cell wall damage–induced jasmonic acid (JA) production. We propose that THE1 is responsible for coordinating changes in turgor pressure and cell wall stiffness.


2020 ◽  
Vol 71 (18) ◽  
pp. 5484-5494 ◽  
Author(s):  
Bo Zhang ◽  
Bernadette Sztojka ◽  
Carolin Seyfferth ◽  
Sacha Escamez ◽  
Pál Miskolczi ◽  
...  

Abstract PIRIN2 (PRN2) was earlier reported to suppress syringyl (S)-type lignin accumulation of xylem vessels of Arabidopsis thaliana. In the present study, we report yeast two-hybrid results supporting the interaction of PRN2 with HISTONE MONOUBIQUITINATION2 (HUB2) in Arabidopsis. HUB2 has been previously implicated in several plant developmental processes, but not in lignification. Interaction between PRN2 and HUB2 was verified by β-galactosidase enzymatic and co-immunoprecipitation assays. HUB2 promoted the deposition of S-type lignin in the secondary cell walls of both stem and hypocotyl tissues, as analysed by pyrolysis-GC/MS. Chemical fingerprinting of individual xylem vessel cell walls by Raman and Fourier transform infrared microspectroscopy supported the function of HUB2 in lignin deposition. These results, together with a genetic analysis of the hub2 prn2 double mutant, support the antagonistic function of PRN2 and HUB2 in deposition of S-type lignin. Transcriptome analyses indicated the opposite regulation of the S-type lignin biosynthetic gene FERULATE-5-HYDROXYLASE1 by PRN2 and HUB2 as the underlying mechanism. PRN2 and HUB2 promoter activities co-localized in cells neighbouring the xylem vessel elements, suggesting that the S-type lignin-promoting function of HUB2 is antagonized by PRN2 for the benefit of the guaiacyl (G)-type lignin enrichment of the neighbouring xylem vessel elements.


2019 ◽  
Vol 11 (10) ◽  
pp. 14309-14317
Author(s):  
Okwong John Walter ◽  
Olusola Helen Adekanmbi ◽  
Omonu Clifford

The factors affecting African Forest Elephants include food availability, demand for ivory and changes in land-use. In order to survive, they tend to traverse considerable distances in search of food; on such occasions they are trapped and killed for their ivory.  This present study is aimed at assessing the faecal matter of elephants, and at providing information on the season of ingestion and foraging preferences of these elephants.  Faecal matter was collected at nine different locations for one year before being processed and subjected to standard palynological laboratory procedures.  The analyses showed that the samples had moderately abundant and diversified palynomorphs.  A total of 27 palynomorphs belonging to 22 families with a total count of 2,895 accounting for 94.34% were found to be eaten, while other plant fragments (epidermal cells, xylem vessel elements, and seeds) accounted for 5.66%.  The wet and dry seasons accounted for 73.26% and 26.74% respectively.  Epidermal cells and xylem vessel elements recorded (70.76%) and (29.2%) during the dry and wet seasons, respectively.  In the palynological analysis, pollen of Balanites wilsoniana, Desplatsia subericarpa, Chrysophyllum albidum, among others were recovered in the faecal matter.  Pollen analysis of faecal matters provided no information about the quantitative composition of the natural vegetation of elephants, but rather valuable information about their diet. It is recommended that these preferentially foraged parent plants should be cultivated on a large scale.  This would potentially reduce competition for food and movement of these animals to other greener areas, consequently leading to poaching.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mari Kurokawa ◽  
Masataka Nakano ◽  
Nobutaka Kitahata ◽  
Kazuyuki Kuchitsu ◽  
Toshiki Furuya

AbstractMicroorganisms that activate plant immune responses have attracted considerable attention as potential biocontrol agents in agriculture because they could reduce agrochemical use. However, conventional methods to screen for such microorganisms using whole plants and pathogens are generally laborious and time consuming. Here, we describe a general strategy using cultured plant cells to identify microorganisms that activate plant defense responses based on plant–microbe interactions. Microbial cells were incubated with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses secreted by an oomycete. Cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells served as a marker to evaluate the potential of microorganisms to activate plant defense responses. Twenty-nine bacterial strains isolated from the interior of Brassica rapa var. perviridis plants were screened, and 8 strains that enhanced cryptogein-induced ROS production in BY-2 cells were selected. Following application of these strains to the root tip of Arabidopsis seedlings, two strains, Delftia sp. BR1R-2 and Arthrobacter sp. BR2S-6, were found to induce whole-plant resistance to bacterial pathogens (Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovora subsp. carotovora NBRC 14082). Pathogen-induced expression of plant defense-related genes (PR-1, PR-5, and PDF1.2) was enhanced by the pretreatment with strain BR1R-2. This cell–cell interaction-based platform is readily applicable to large-scale screening for microorganisms that enhance plant defense responses under various environmental conditions.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanping Long ◽  
Zhijian Liu ◽  
Jinbu Jia ◽  
Weipeng Mo ◽  
Liang Fang ◽  
...  

AbstractThe broad application of single-cell RNA profiling in plants has been hindered by the prerequisite of protoplasting that requires digesting the cell walls from different types of plant tissues. Here, we present a protoplasting-free approach, flsnRNA-seq, for large-scale full-length RNA profiling at a single-nucleus level in plants using isolated nuclei. Combined with 10x Genomics and Nanopore long-read sequencing, we validate the robustness of this approach in Arabidopsis root cells and the developing endosperm. Sequencing results demonstrate that it allows for uncovering alternative splicing and polyadenylation-related RNA isoform information at the single-cell level, which facilitates characterizing cell identities.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Weimiao Liu ◽  
Liai Xu ◽  
Hui Lin ◽  
Jiashu Cao

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5793
Author(s):  
Brianna M. Quinville ◽  
Natalie M. Deschenes ◽  
Alex E. Ryckman ◽  
Jagdeep S. Walia

Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.


Sign in / Sign up

Export Citation Format

Share Document