scholarly journals Vibration Analysis of Axially Functionally Graded Non-Prismatic Timoshenko Beams Using the Finite Difference Method

Author(s):  
Valentin Fogang

This paper presents an approach to the vibration analysis of axially functionally graded non-prismatic Timoshenko beams (AFGNPTB) using the finite difference method (FDM). The characteristics (cross-sectional area, moment of inertia, elastic moduli, shear moduli, and mass density) of axially functionally graded beams vary along the longitudinal axis. The Timoshenko beam theory covers cases associated with small deflections based on shear deformation and rotary inertia considerations. The FDM is an approximate method for solving problems described with differential equations. It does not involve solving differential equations; equations are formulated with values at selected points of the structure. In addition, the boundary conditions and not the governing equations are applied at the beam’s ends. In this paper, differential equations were formulated with finite differences, and additional points were introduced at the beam’s ends and at positions of discontinuity (supports, hinges, springs, concentrated mass, spring-mass system, etc.). The introduction of additional points allowed us to apply the governing equations at the beam’s ends and to satisfy the boundary and continuity conditions. Moreover, grid points with variable spacing were also considered, the grid being uniform within beam segments. Vibration analysis of AFGNPTB was conducted with this model, and natural frequencies were determined. Finally, a direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of AFGNPTB, considering the damping. The results obtained in this study showed good agreement with those of other studies, and the accuracy was always increased through a grid refinement.

Author(s):  
Valentin Fogang

This paper presents an approach to the vibration analysis of axially functionally graded (AFG) non-prismatic Euler-Bernoulli beams using the finite difference method (FDM). The characteristics (cross-sectional area, moment of inertia, elastic moduli, and mass density) of AFG beams vary along the longitudinal axis. The FDM is an approximate method for solving problems described with differential equations. It does not involve solving differential equations; equations are formulated with values at selected points of the structure. In addition, the boundary conditions and not the governing equations are applied at the beam’s ends. In this paper, differential equations were formulated with finite differences, and additional points were introduced at the beam’s ends and at positions of discontinuity (supports, hinges, springs, concentrated mass, spring-mass system, etc.). The introduction of additional points allowed us to apply the governing equations at the beam’s ends and to satisfy the boundary and continuity conditions. Moreover, grid points with variable spacing were also considered, the grid being uniform within beam segments. Vibration analysis of AFG non-prismatic Euler-Bernoulli beams was conducted with this model, and natural frequencies were determined. Finally, a direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of AFG non-prismatic Euler-Bernoulli beams, considering the damping. The results obtained in this paper showed good agreement with those of other studies, and the accuracy was always increased through a grid refinement.


Author(s):  
Valentin Fogang

This paper presents an approach to the vibration analysis of axially functionally graded non-prismatic Timoshenko beams (AFGNPTB) using the finite difference method (FDM). The characteristics (cross-sectional area, moment of inertia, elastic moduli, shear moduli, and mass density) of axially functionally graded beams vary along the longitudinal axis. The Timoshenko beam theory covers cases associated with small deflections based on shear deformation considerations. The FDM is an approximate method for solving problems described with differential or partial differential equations. It does not involve solving differential equations; equations are formulated with values at selected points of the structure. The model developed in this paper consists of formulating differential or partial differential equations with finite differences and introducing new points (additional or imaginary points) at boundaries and positions of discontinuity (concentrated loads or moments, supports, hinges, springs, and brutal change of stiffness). The introduction of additional points allows satisfying boundary and continuity conditions. Vibration analysis of AFGNPTB was conducted with this model, and natural frequencies were determined. Finally, the direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of AFGNPTB, considering the damping. The efforts and displacements could be determined at any time.


Author(s):  
Valentin Fogang

This paper presents an approach to the vibration analysis of axially functionally graded (AFG) non-prismatic Euler-Bernoulli beams using the finite difference method (FDM). The characteristics (cross-sectional area, moment of inertia, elastic moduli, and mass density) of AFG beams vary along the longitudinal axis. The FDM is an approximate method for solving problems described with differential or partial differential equations. It does not involve solving differential equations; equations are formulated with values at selected points of the structure. The model developed in this paper consists of formulating differential or partial differential equations with finite differences and introducing new points (additional or imaginary points) at boundaries and positions of discontinuity (concentrated loads or moments, supports, hinges, springs, and brutal change of stiffness). The introduction of additional points allows satisfying boundary and continuity conditions. Vibration analysis of AFG non-prismatic Euler-Bernoulli beams was conducted with this model, and natural frequencies were determined. Finally, the direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of AFG non-prismatic Euler-Bernoulli beams, considering the damping. The efforts and displacements could be determined at any time.


Author(s):  
Valentin Fogang

This paper presents an approach to the Timoshenko beam theory (TBT) using the finite difference method (FDM). The TBT covers cases associated with small deflections based on shear deformation considerations, whereas the Euler–Bernoulli beam theory neglects shear deformations. The FDM is an approximate method for solving problems described with differential or partial differential equations. It does not involve solving differential equations; equations are formulated with values at selected points of the structure. The model developed in this paper consists of formulating partial differential equations with finite differences and introducing new points (additional or imaginary points) at boundaries and positions of discontinuity (concentrated loads or moments, supports, hinges, springs, brutal change of stiffness). The introduction of additional points allows satisfying boundary and continuity conditions. First-order, second-order, and vibration analyses of structures were conducted with this model. Efforts, displacements, stiffness matrices, buckling loads, and vibration frequencies were determined. In addition, tapered beams were analyzed (e.g., element stiffness matrix, second-order analysis, and vibration analysis). Finally, the direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of structures, considering the damping. The efforts and displacements could be determined at any time.


2019 ◽  
Vol 6 (4) ◽  
pp. 14-18 ◽  
Author(s):  
Антон Чепурненко ◽  
Anton Chepurnenko ◽  
Батыр Языев ◽  
Batyr Yazyev ◽  
Анастасия Лапина ◽  
...  

The article presents the derivation of the resolving equations for the calculation of three-layer cylindrical shells under axisymmetric loading, taking into account creep. The problem is reduced to a system of two ordinary differential equations. The solution is performed numerically using the finite difference method in combination with the Euler method.


Author(s):  
M A Murtaza ◽  
S B L Garg

This paper deals with the simulation of railway air brake release demand of a twin-pipe graduated release railway air brake system based on the solution of partial differential equations governing one-dimensional flow by the finite difference method supported by extrapolation/interpolation. Air brake release demand is simulated as an exponential input of pressure. The analysis incorporates the corrections needed to be used for various restrictions in the brake pipeline. Results are in good agreement with the laboratory data.


2014 ◽  
Vol 59 (3) ◽  
pp. 981-986 ◽  
Author(s):  
I. Olejarczyk-Wożeńska ◽  
H. Adrian ◽  
B. Mrzygłód

Abstract The paper presents a mathematical model of the pearlite - austenite transformation. The description of this process uses the diffusion mechanism which takes place between the plates of ferrite and cementite (pearlite) as well as austenite. The process of austenite growth was described by means of a system of differential equations solved with the use of the finite difference method. The developed model was implemented in the environment of Delphi 4. The proprietary program allows for the calculation of the rate and time of the transformation at an assumed temperature as well as to determine the TTT diagram for the assigned temperature range.


Sign in / Sign up

Export Citation Format

Share Document