scholarly journals APLIKASI MODEL EPIDEMIK SEIAR-SEI PADA PENYEBARAN PENYAKIT MALARIA DENGAN INFEKSI ASIMTOMATIK DAN SUPER INFEKSI

2018 ◽  
Vol 15 (2) ◽  
pp. 67
Author(s):  
Stella Maryana Belwawin

AbstractThis aim of this study is to determine the point of equilibrium and analyze the stability of SEIAR-SEI model on malaria disease with asymptomatic infection, super infection and the effect of the mosquito's life cycle. This study also aim is to measure the sensitivity of the spread of malaria to the parameters of asymptomatic infections, the rate of treatment, and the rate of birth of mosquitoes through the magnitude of . The method in this research is deductively, through several stage, such as  determination of disease-free equilibrium point and endemic equilibrium point, determination of basic reproduction number (), analyze of the basic reproduction number sensitivity of the spread of malaria to the parameters of asymptomatic infections, the rate of treatment, and the rate of birth of mosquitoes. The endemic equilibrium point was obtained using rule of Descartes. The result show that the change in the value of parameter , , and  has effect on the basic reproduction number (). Treatment factors in the human population influence the elimination of malaria in a population. Whereas asymptomatic infection factors and the birth rate of adult mosquitoes influence the increase in malaria infection. Keywords:  Malaria, asymptomatic infection, super infection, basic reproduction number, rule of descrates. AbstrakPenelitian ini bertujuan menentukan titik keseimbangan dan menganalisis kestabilan dari model SEIAR_SEI pada penyakit malaria dengan pengaruh infeksi asimtomatik, super infeksi, dan siklus hidup nyamuk. Penelitian ini juga bertujuan mengukur tingkat sensitivitas penyebaran penyakit malaria terhadap parameter infeksi asimtomatik, laju pengobatan, serta laju kelahiran nyamuk.melalu besaran .  Metode yang digunakan dalam penelitian ini adalah metode deduktif dengan langkah-langkah : menentukan titik keseimbangan bebas penyakit dan endemik dan menentukan bilangan reproduksi dasar ). Analisis sensitivitas bilangan reproduksi dasar dilakukan terhadap parameter infeksi asimtomatik, pengobatan, dan laju kelahiran nyamuk. Tititk keseimbangan endemik diperoleh dengan aturan descrates. Hasil yang diperoleh menunjukkan parameter , , dan  berpengaruh terhadap bilangan reproduksi dasar (). Faktor pengobatan berpengaruh terhadap eliminasi penyakit malaria. Sedangkan faktor infeksi asimtomatik dan laju kelahiran nyamuk dewasa berpengaruh terhadap peningkatan infeksi penyakit malaria. Kata kunci: Malaria, Infeksi Asimtomatik, Super Infeksi, Bilangan Reproduksi Dasar, Aturan Descrates . 

2016 ◽  
Vol 5 (1) ◽  
pp. 23
Author(s):  
Endah Purwati ◽  
Sugiyanto Sugiyanto

Ebola is a deadly disease caused by a virus and is spread through direct contact with blood or body fluids such as urine, feces, breast milk, saliva and semen. In this case, direct contact means that the blood or body fluids of patients were directly touching the nose, eyes, mouth, or a wound someone open. In this paper examined two mathematical models SIRD (Susceptibles-Infected-Recovery-Deaths) the spread of the Ebola virus in the human population. Both the mathematical model SIRD on the spread of the Ebola virus is a model by Abdon A. and Emile F. D. G. and research development model. This study was conducted to determine the point of disease-free equilibrium and endemic equilibrium point and stability analysis of the dots, knowing the value of the basic reproduction number (R0) and a simulation model using Matlab software version 6.1.0.450. From the analysis of the two models, obtained the same point for disease-free equilibrium point with the stability of different points and different points for endemic equilibrium point with the stability of both the same point and the same value to the value of the basic reproduction number (R0). After simulating the model using Matlab software version 6.1.0.450, it can be seen changes in the behavior of the population at any time.


2017 ◽  
Vol 9 (2) ◽  
pp. 21
Author(s):  
Tesa Nur Padilah ◽  
Najmudin Fauji

Orange fruits are important commodities in Indonesia. However, the efforts to increase production of oranges still have obstacles. One of them is because ofCVPD (Citrus Vein Phloem Degeneration) disease. The spread of CVPD disease in orange plants can be modeled by mathematical model, that is epidemic model betweenorange plants as a host plant and Diaphorina Citri as a vector. In this model, predation response follows Holling Type II response function. The model is then analyzed by checking the stability of the equilibrium point and computing basic reproduction number. This model has an endemic equilibrium point. If the basic reproduction number is more than one then an endemic equilibrium point is locally asymptotic stable or epidemic which means that it occurs in the population. The simulation result of the model are in good agreement with the model behavior analysis.


2020 ◽  
Vol 10 (22) ◽  
pp. 8296 ◽  
Author(s):  
Malen Etxeberria-Etxaniz ◽  
Santiago Alonso-Quesada ◽  
Manuel De la Sen

This paper investigates a susceptible-exposed-infectious-recovered (SEIR) epidemic model with demography under two vaccination effort strategies. Firstly, the model is investigated under vaccination of newborns, which is fact in a direct action on the recruitment level of the model. Secondly, it is investigated under a periodic impulsive vaccination on the susceptible in the sense that the vaccination impulses are concentrated in practice in very short time intervals around a set of impulsive time instants subject to constant inter-vaccination periods. Both strategies can be adapted, if desired, to the time-varying levels of susceptible in the sense that the control efforts be increased as those susceptible levels increase. The model is discussed in terms of suitable properties like the positivity of the solutions, the existence and allocation of equilibrium points, and stability concerns related to the values of the basic reproduction number. It is proven that the basic reproduction number lies below unity, so that the disease-free equilibrium point is asymptotically stable for larger values of the disease transmission rates under vaccination controls compared to the case of absence of vaccination. It is also proven that the endemic equilibrium point is not reachable if the disease-free one is stable and that the disease-free equilibrium point is unstable if the reproduction number exceeds unity while the endemic equilibrium point is stable. Several numerical results are investigated for both vaccination rules with the option of adapting through ime the corresponding efforts to the levels of susceptibility. Such simulation examples are performed under parameterizations related to the current SARS-COVID 19 pandemic.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


CAUCHY ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 122-132
Author(s):  
Joko Harianto ◽  
Inda Puspita Sari

Discussion of local stability analysis of SVIR models in this article is included in the scope of applied mathematics. The purpose of this discussion was to provide results of local stability analysis that had not been discussed in some articles related to the SVIR model. The SVIR models discussed in this article involve logistics growth in the vaccinated compartment. The results obtained, i.e. if the basic reproduction number less than one and m is positive, then there is one equilibrium point i.e. E0 is locally asymptotically stable. In the field of epidemiology, this means that the disease will disappear from the population. However, if the basic reproduction number more than one and b1 more than b, then there are two equilibrium points i.e. disease-free equilibrium point denoted by E0 and the endemic equilibrium point denoted by E1*. In this case the endemic equilibrium point E1* is locally asymptotically stable. In the field of epidemiology, this means that the disease will remain in the population. The numerical simulation supports these results.


2021 ◽  
Vol 16 ◽  
pp. 1-9
Author(s):  
Joko Harianto

This article discusses modifications to the SEIL model that involve logistical growth. This model is used to describe the dynamics of the spread of tuberculosis disease in the population. The existence of the model's equilibrium points and its local stability depends on the basic reproduction number. If the basic reproduction number is less than unity, then there is one equilibrium point that is locally asymptotically stable. The equilibrium point is a disease-free equilibrium point. If the basic reproduction number ranges from one to three, then there are two equilibrium points. The two equilibrium points are disease-free equilibrium and endemic equilibrium points. Furthermore, for this case, the endemic equilibrium point is locally asymptotically stable.


2021 ◽  
Vol 4 (2) ◽  
pp. 106-124
Author(s):  
Raqqasyi Rahmatullah Musafir ◽  
Agus Suryanto ◽  
Isnani Darti

We discuss the dynamics of new COVID-19 epidemic model by considering asymptomatic infections and the policies such as quarantine, protection (adherence to health protocols), and vaccination. The proposed model contains nine subpopulations: susceptible (S), exposed (E), symptomatic infected (I), asymptomatic infected (A), recovered (R), death (D), protected (P), quarantined (Q), and vaccinated (V ). We first show the non-negativity and boundedness of solutions. The equilibrium points, basic reproduction number, and stability of equilibrium points, both locally and globally, are also investigated analytically. The proposed model has disease-free equilibrium point and endemic equilibrium point. The disease-free equilibrium point always exists and is globally asymptotically stable if basic reproduction number is less than one. The endemic equilibrium point exists uniquely and is globally asymptotically stable if the basic reproduction number is greater than one. These properties have been confirmed by numerical simulations using the fourth order Runge-Kutta method. Numerical simulations show that the disease transmission rate of asymptomatic infection, quarantine rates, protection rate, and vaccination rates affect the basic reproduction number and hence also influence the stability of equilibrium points.


Author(s):  
Flaviana Priscilla Persulessy ◽  
Paian Siantur ◽  
Jaharuddin .

Dengue virus is one of virus that cause deadly disease was dengue fever. This virus was transmitted through bite of Aedes aegypti female mosquitoes that gain virus infected by taking food from infected human blood, then mosquitoes transmited pathogen to susceptible humans. Suppressed the spread and growth of dengue fever was important to avoid and prevent the increase of dengue virus sufferer and casualties. This problem can be solved with studied important factors that affected the spread and equity of disease by sensitivity index. The purpose of this research were to modify mathematical model the spread of dengue fever be SEIRS-ASEI type, to determine of equilibrium point, to determined of basic reproduction number, stability analysis of equilibrium point, calculated sensitivity index, to analyze sensitivity, and to simulate numerical on modification model. Analysis of model obtained disease free equilibrium (DFE) point and endemic equilibrium point. The numerical simulation result had showed that DFE, stable if the basic reproduction number is less than one and endemic equilibrium point was stable if the basic reproduction number is more than one.


2020 ◽  
Vol 14 (2) ◽  
pp. 297-304
Author(s):  
Joko Harianto ◽  
Titik Suparwati ◽  
Inda Puspita Sari

Abstrak Artikel ini termasuk dalam ruang lingkup matematika epidemiologi. Tujuan ditulisnya artikel ini untuk mendeskripsikan dinamika lokal penyebaran suatu penyakit dengan beberapa asumsi yang diberikan. Dalam pembahasan, dianalisis titik ekuilibrium model epidemi SVIR dengan adanya imigrasi pada kompartemen vaksinasi. Dengan langkah pertama, model SVIR diformulasikan, kemudian titik ekuilibriumnya ditentukan, selanjutnya, bilangan reproduksi dasar ditentukan. Pada akhirnya, kestabilan titik ekuilibirum yang bergantung pada bilangan reproduksi dasar ditentukan secara eksplisit. Hasilnya adalah jika bilangan reproduksi dasar kurang dari satu maka terdapat satu titik ekuilbirum dan titik ekuilbrium tersebut stabil asimtotik lokal. Hal ini berarti bahwa dalam kondisi tersebut penyakit akan cenderung menghilang dalam populasi. Sebaliknya, jika bilangan reproduksi dasar lebih dari satu, maka terdapat dua titik ekuilibrium. Dalam kondisi ini, titik ekuilibrium endemik stabil asimtotik lokal dan titik ekuilibrium bebas penyakit tidak stabil. Hal ini berarti bahwa dalam kondisi tersebut penyakit akan tetap ada dalam populasi. Kata Kunci : Model SVIR, Stabil Asimtotik Lokal Abstract This article is included in the scope of mathematical epidemiology. The purpose of this article is to describe the dynamics of the spread of disease with some assumptions given. In this paper, we present an epidemic SVIR model with the presence of immigration in the vaccine compartment. First, we formulate the SVIR model, then the equilibrium point is determined, furthermore, the basic reproduction number is determined. In the end, the stability of the equilibrium point is determined depending on the number of basic reproduction. The result is that if the basic reproduction number is less than one then there is a unique equilibrium point and the equilibrium point is locally asymptotically stable. This means that in those conditions the disease will tend to disappear in the population. Conversely, if the basic reproduction number is more than one, then there are two equilibrium points. The endemic equilibrium point is locally asymptotically stable and the disease-free equilibrium point is unstable. This means that in those conditions the disease will remain in the population. Keywords: SVIR Model, Locally Asymptotically stable.


Author(s):  
Syafruddin Side ◽  
Ahmad Zaki ◽  
S. Sartika

Penelitian ini bertujuan untuk membangun model penyebaran penyakit Tifus tipe SIRI (Susceptible-Infected-Recovered-Infected), dengan menambahkan asumsi bahwa manusia yang sembuh dapat kembali terinfeksi penyakit Tifus. Model ini di bagi menjadi 3 kelas yaitu rentan, terinfeksi dan sembuh. Adapun prosedur penelitian dilakukan melalui tahapan-tahapan: membangun model penyebaran penyakit Tifus tipe SIRI, Menguji Kestabilan titik kesetimbangan dan menentukan bilangan reproduksi dasar , kemudian menerapkannya pada kasus Penyakit Tifus di Provinsi Sulawesi Selatan. Data yang digunakan dalam membangun model adalah jumlah penderita penyakit Tifus tahun 2018 dari Dinas Kesehatan Provinsi Sulawesi Selatan. Model matematika tipe SIRI digunakan untuk menentukan titik equilibrium. Berdasarkan hasil simulasi model SIRI diperoleh bilangan reproduksi dasar (  sebesar 0,000903 yang menandakan bahwa penyebaran penyakit Tifus di Provinsi Sulawesi Selatan pada tahun 2018 bukan kejadian luar biasa atau dapat dikatakan bahwa seseorang yang terinfeksi penyakit Tifus ini tidak menyebabkan orang lain terkenapenyakit yang sama, dengan kata lain tidak terjadi wabah pada populasi tersebut.Kata kunci: Titik Equilibrium, Bilangan Reproduksi Dasar, Tifus, Model SIRI. The research aims to build a SIRI model of the Typhoid spread (Susceptible-Infected-Recovered-Infected) by adding assumption that people who are recovered might be infected again. This model is divided into three classes, namely, susceptible, infected and recovered. the research procedure is carried out through several stages: Building SIRI model for the spread of Typhoid, examining the stability of the equilibrium point and determining the basic reproduction number, and applying the model to Typhoid cases in South Sulawesi. The data is the number of Typhus patients in 2018 that was obtained from Health office of South Sulawesi Province. SIRI type mathematical models are used to determine the equilibrium point. Based on the simulation results of the SIRI model, the basic reproduction number is 0,000903 indicate that, indicating that the spread of Typhus in the Province of South Sulawesi in 2018 was not an extraordinary event or it can be said that someone who is infected with this Typhoid does not cause another person to contract the same disease, in other words there was no outbreak in that population.Keywords: equilibrium Point, Basic Reproductive Number, Typhoid, SIRI Model.


Sign in / Sign up

Export Citation Format

Share Document