SKIN IRRITATION, SKIN SENSITIZATION AND IN VIVO STUDIES OF SUMATRIPTAN SUCCINATE NEW LIPOSOMAL DRUG IN ADHESIVE PATCH FOR TRANSDERMAL DRUG DELIVERY

Author(s):  
M. Srujan Kumar
Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 163 ◽  
Author(s):  
Yongtai Zhang ◽  
Hongmei Hu ◽  
Qian Jing ◽  
Zhi Wang ◽  
Zehui He ◽  
...  

In the current study, diethylene glycol monoethyl ether-mediated microemulsions were combined with microneedles for enhanced transdermal aconitine delivery. The oil-in-water microemulsion increasedaconitine solubility and enhanced transdermal drug delivery and assistance with metal microneedles enhanced permeation of the aconitine-loaded microemulsion. Carried by the microemulsion, the in vitro permeability of aconitine was significantly enhanced, and further improved using microneedles. In vivo microdialysis revealed that the subcutaneous local drug concentration reached a high level within 30 min and remained relatively consistent to the end of the experimental period. AUC0-t of the microemulsion group was significantly higher than that of the aqueous solution group, and the microemulsion combined with microneedles group achieved the highest AUC0-t among the tested groups. The microemulsion and microdialysis probe also showed good biocompatibility with skin tissue. The microemulsion could be internalized by HaCaT and CCC-ESF-1 cells via lysosomes. The in vitro cytotoxicity of aconitine toward skin cells was reduced via encapsulation by microemulsion, and the prepared microemulsion developed no skin irritation. Hence, transdermal aconitine delivery and drug biosafety were effectively improved by loading into the microemulsion and assisting with microneedles, and in vivo microdialysis technique is suitable for realtime monitoring of transdermal drug delivery with microemulsion-based drug vehicles.


2021 ◽  
Vol 11 (5-S) ◽  
pp. 176-187
Author(s):  
Sudip Das ◽  
Koushik Sen Gupta

The drug delivery within the stratum corneum of the skin prevails a challenging area for the pharmaceutical field, especially to the formulation scientists. Several investigations revealed that the lipid domain, which is the integral component of the transport barrier, must be breached if it is to be delivered transdermally at an appropriate rate. In particular, transdermal drug delivery has intrigued researchers with multiple suggestions because multiple dosing or insufficient drug delivery or characteristics of various drugs often results in low therapeutic effects. The application of permeation or penetration enhancers may prolong the number of drugs that can be offered topically. The application of any natural permeation enhancer is innoxious over the artificial permeation enhancers. The natural permeation enhancers are investigated, so notably include essential oils, terpenes, terpenoids, fatty acid esters, etc., have a certain effect in the transdermal drug delivery system. Despite decades of investigation on the natural chemical penetration enhancer, the researchers could not establish the effectiveness of natural penetration enhancers clinically due to the lack of in vivo models. Several factors, like solubility, solvent selection, experimental models, etc., has restricted the application and development of natural penetration enhancers in topical drug delivery systems, especially in the patches. Therefore, further investigation needs to do on skin irritation to decide natural penetration enhancers controlling optimum enhancement effects with minimal skin irritation. This review gives a comprehensive literature survey on naturally obtained chemical penetration enhancers and their future possibilities. Keywords: Topical Drug delivery system, Natural products, Penetration enhancer, Stratum corneum, In vivo models.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Niharika Lal ◽  
Navneet Verma

Abstract Background A double-layer transdermal drug-in-adhesive patch of carvedilol was developed using functional and nonfunctional grades of acrylic adhesives, DURO-TAK® 387-2051, DURO-TAK® 387-2510, and DURO-TAK® 87-4098. The patch was designed to provide adequate permeation of the drug up to 2 days, with effective adhesion attributes. An optimized formulation was selected, the effect of the combination was studied and a 180° peel strength test was performed to evaluate adhesive properties. Further, the patch was assessed for in vivo studies on basis of biochemical parameters, skin irritation, and stability studies. The stability study was carried out on optimized fresh (S1) and 6 months old patches stored at room, and accelerated condition (40 ± 2 °C/75 ± 5% RH) using FTIR, DSC, and SEM techniques. Result It was studied that the steady-state flux (Jss) or permeation rate of the drug through excised rat skin has relied on the nature of acrylic and the combination of acrylic polymers. The TDDS containing –OH functional group DT 387-2510 with nonfunctional pressure-sensitive adhesives (PSAs) DT 87-4098, with Span 80 as penetration enhancer exhibited maximum flux (19.12 ± 0.64 μg/cm2/h) and form homogeneous and stable blends, controlling permeation of drug at a desired steady rate for 48 h. The data obtained from in vivo studies using biochemical parameters suggested that there were no statistical differences observed in results for the control and treated group while analyzing observations for serum creatinine, glucose test, sodium test, albumin, and potassium (p > 0.05). Also, the optimized formulation showed no sign of localized reactions and was confirmed by a skin histological study indicating the formulation was safe and compatible with the skin. A significant shift of peaks was not observed in FTIR spectra and DSC thermograms of the patches after the stability period. Conclusion The investigation reveals that the drug-in-adhesive patch of carvedilol, by a combination of functional and nonfunctional PSAs, provides a good and effective option for controlled delivery of carvedilol. From our findings, it has been concluded that drug in the adhesive patch has been able to provide satisfactory adhesion, drug uniformity, drug permeation, marked positive biochemical results, and good stability.


2015 ◽  
Vol 73 (5) ◽  
pp. 1229-1245 ◽  
Author(s):  
Sayed H. Auda ◽  
Dina Fathalla ◽  
Gihan Fetih ◽  
Mahmoud El-Badry ◽  
Faiyaz Shakeel

1992 ◽  
Vol 81 (10) ◽  
pp. 996-999 ◽  
Author(s):  
Rajeev Gokhale ◽  
Cynthia Schmidt ◽  
Lisa Alcorn ◽  
James Stolzenbach ◽  
Grant Schoenhard ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2012 ◽  
Vol 430 (1-2) ◽  
pp. 276-281 ◽  
Author(s):  
Yiguang Jin ◽  
Yanju Lian ◽  
Lina Du ◽  
Shuangmiao Wang ◽  
Chang Su ◽  
...  

2021 ◽  
Vol 18 ◽  
Author(s):  
Subheet Kumar Jain ◽  
Neha Panchal ◽  
Amrinder Singh ◽  
Shubham Thakur ◽  
Navid Reza Shahtaghi ◽  
...  

Background: Diclofenac sodium (DS) injection is widely used in the management of acute or chronic pain and inflammatory diseases. It incorporates 20 % w/v Transcutol-P as a solubilizer to make the stable injectable formulation. However, the use of Transcutol-P in high concentration leads to adverse effects such as severe nephrotoxicity, etc. Some advancements resulted in the formulation of an aqueous based injectable but that too used benzyl alcohol reported to be toxic for human use. Objective: To develop an injectable self-micro emulsifying drug delivery system (SMEDDS) as a novel carrier of DS for prompt release with better safety and efficacy. Methods: A solubility study was performed with different surfactants and co-surfactants. The conventional stirring method was employed for the formulation of SMEDDS. Detailed in vitro characterization was done for different quality control parameters. In vivo studies were performed using Wistar rats for pharmacokinetic evaluation, toxicological analysis, and analgesic activity. Results: The optimized formulation exhibited good physical stability, ideal globule size (156±0.4 nm), quick release, better therapeutics, and safety, increase in LD50 (221.9 mg/kg) to that of the commercial counterpart (109.9 mg/kg). Further, pre-treatment with optimized formulation reduced the carrageenan-induced rat paw oedema by 88±1.2 % after 4 h, compared to 77±1.6 % inhibition with commercial DS formulation. Moreover, optimized formulation significantly (p<0.05) inhibited the pain sensation in the acetic-acid induced writhing test in mice compared to its commercial equivalent with a better pharmacokinetic profile. Conclusion: The above findings confirmed that liquid SMEDDS could be a successful carrier for the safe and effective delivery of DS


Sign in / Sign up

Export Citation Format

Share Document