Selected Papers from IFSA'99

Author(s):  
Jonathan Lee* ◽  
◽  
Hsiao-Fan Wang**

The past few years we have witnessed a crystallization of soft computing as a means towards the conception and design of intelligent systems. Soft Computing is a synergetic integration of neural networks, fuzzy logic and evolutionary computation including genetic algorithms, chaotic systems, and belief networks. In this volume, we are featuting seven papers devoted to soft computing as a special issue. These papers are selected from papers submitted to the "The eighth International Fuzzy Systems Association World Congress (IFSA'99)", held in Taipei, Taiwan, in August 1999. Each paper received outstanding recommendations from its reviewers. G-H Tzeng et al. integrate fuzzy numbers, fuzzy regression, and a fuzzy DEA approach as a performance evaluation model for forecasting the productive efficiency of a set of production units when some data are fuzzy numbers. A case of Taipei City Bus Company is adopted for illustration. Y. Shi et al. adopts a fuzzy programming approach to solve a MCMDM (multiple criteria and multiple decision makers) capital budget problem. A solution procedure is proposed to systematically identify a fuzzy optimal selection of possible projects. N. Nguyen et al. propose a new formalism (Chu spaces) to describe parallelism and information flow. Chu spaces provide uniform explanations for different choices of fuzzy methodology, such as choices of fuzzy logical operations of membership functions or defuzzifications. M-C Su et al. propose a technique based on the SOM-based fuzzy systems for voltage security margin estimation. This technique was tested on 1604 simulated data randomly generated from operating conditions on the IEEE 30-bus system to indicate its high efficiency. By defining the concept of approximate dependency and a similarity measure, S-L Wang et al. present a method of using analogical reasoning to infer approximate answers for null queries on similarity-based fuzzy relational databases. K.Yeh et al. use adaptive fuzzy sliding mode control for the structural control of bridges. Combing fuzzy control and sliding mode control can reduce the complexity of fuzzy rule bases and ensure the stability and robustness. This model is demonstrated by three types of bridges, with LRB, sliding isolators and no isolation device. Based on a novel fuzzy clustering algorithm, Y-H Kuo et al. propose an adaptive traffic prediction approach to generalize and unveil the hidden structure of traffic patterns with features of robustness, high accuracy and high adaptability. The periodical, Poisson and real video traffic patterns have been used to verify their approach and investigate its properties. We would like to express our sincere gratitude to everyone who has contributed to this special issue including the authors, the co-reviewers, the JACI Editors-in-Chief Toshio Fukuda and Kaoru Hirota.

2021 ◽  
Vol 23 (5) ◽  
pp. 391-399
Author(s):  
Attoui Hadjira ◽  
Behih Khalissa ◽  
Bouchama Ziyad ◽  
Ziyad Nadjat

This paper presents an intelligent monitoring control strategy for a maximum power point tracking (MPPT) in photovoltaic (PV) system applications. The design of the proposed nonlinear adaptive control law (AFBSMC) is formulated based on adaptive fuzzy systems, backstepping approach and sliding mode technique to maximize the power output of a PV system under various sets of conditions and parameters variation. Unlike many conventional controllers, the main contribution of the present paper provides a soften control law which useful to handle parameters variations due to the different operating conditions occurring on the PV system and makes the controller easy to implement. This aim is achieved using fuzzy systems in an adaptive scheme to approximate the switching control function of the global control law while backstepping sliding mode control compensates uncertainties and external disturbances. The analytical stability proof of the closed-loop system is corroborated via Lyapunov synthesis while numerical simulations of different operating conditions of a PV system is conducted to validate the effectiveness of the proposed approach.


2020 ◽  
Vol 50 (3) ◽  
pp. 1037-1046
Author(s):  
Huaguang Zhang ◽  
Yingying Wang ◽  
Yingchun Wang ◽  
Jianyu Zhang

2016 ◽  
Vol 24 (5) ◽  
pp. 1048-1057 ◽  
Author(s):  
Shiping Wen ◽  
Tingwen Huang ◽  
Xinghuo Yu ◽  
Michael Z. Q. Chen ◽  
Zhigang Zeng

Sign in / Sign up

Export Citation Format

Share Document