Combining 2D Gabor and Local Binary Pattern for Facial Expression Recognition Using Extreme Learning Machine

Author(s):  
Zhen-Tao Liu ◽  
Si-Han Li ◽  
Wei-Hua Cao ◽  
Dan-Yun Li ◽  
Man Hao ◽  
...  

The efficiency of facial expression recognition (FER) is important for human-robot interaction. Detection of the facial region, extraction of discriminative facial expression features, and identification of categories of facial expressions are all related to the recognition accuracy and time-efficiency. An FER framework is proposed, in which 2D Gabor and local binary pattern (LBP) are combined to extract discriminative features of salient facial expression patches, and extreme learning machine (ELM) is adopted to identify facial expression categories. The combination of 2D Gabor and LBP can not only describe multiscale and multidirectional textural features, but also capture small local details. The FER of ELM and support vector machine (SVM) is performed using the Japanese female facial expression database and extended Cohn-Kanade database, respectively, in which both ELM and SVM achieve an accuracy of more than 85%, and the computational efficiency of ELM is higher than that of SVM. The proposed framework has been used in the multimodal emotional communication based humans-robots interaction system, in which FER within 2 seconds enables real-time human-robot interaction.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yusra Khalid Bhatti ◽  
Afshan Jamil ◽  
Nudrat Nida ◽  
Muhammad Haroon Yousaf ◽  
Serestina Viriri ◽  
...  

Classroom communication involves teacher’s behavior and student’s responses. Extensive research has been done on the analysis of student’s facial expressions, but the impact of instructor’s facial expressions is yet an unexplored area of research. Facial expression recognition has the potential to predict the impact of teacher’s emotions in a classroom environment. Intelligent assessment of instructor behavior during lecture delivery not only might improve the learning environment but also could save time and resources utilized in manual assessment strategies. To address the issue of manual assessment, we propose an instructor’s facial expression recognition approach within a classroom using a feedforward learning model. First, the face is detected from the acquired lecture videos and key frames are selected, discarding all the redundant frames for effective high-level feature extraction. Then, deep features are extracted using multiple convolution neural networks along with parameter tuning which are then fed to a classifier. For fast learning and good generalization of the algorithm, a regularized extreme learning machine (RELM) classifier is employed which classifies five different expressions of the instructor within the classroom. Experiments are conducted on a newly created instructor’s facial expression dataset in classroom environments plus three benchmark facial datasets, i.e., Cohn–Kanade, the Japanese Female Facial Expression (JAFFE) dataset, and the Facial Expression Recognition 2013 (FER2013) dataset. Furthermore, the proposed method is compared with state-of-the-art techniques, traditional classifiers, and convolutional neural models. Experimentation results indicate significant performance gain on parameters such as accuracy, F1-score, and recall.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6438
Author(s):  
Chiara Filippini ◽  
David Perpetuini ◽  
Daniela Cardone ◽  
Arcangelo Merla

An intriguing challenge in the human–robot interaction field is the prospect of endowing robots with emotional intelligence to make the interaction more genuine, intuitive, and natural. A crucial aspect in achieving this goal is the robot’s capability to infer and interpret human emotions. Thanks to its design and open programming platform, the NAO humanoid robot is one of the most widely used agents for human interaction. As with person-to-person communication, facial expressions are the privileged channel for recognizing the interlocutor’s emotional expressions. Although NAO is equipped with a facial expression recognition module, specific use cases may require additional features and affective computing capabilities that are not currently available. This study proposes a highly accurate convolutional-neural-network-based facial expression recognition model that is able to further enhance the NAO robot’ awareness of human facial expressions and provide the robot with an interlocutor’s arousal level detection capability. Indeed, the model tested during human–robot interactions was 91% and 90% accurate in recognizing happy and sad facial expressions, respectively; 75% accurate in recognizing surprised and scared expressions; and less accurate in recognizing neutral and angry expressions. Finally, the model was successfully integrated into the NAO SDK, thus allowing for high-performing facial expression classification with an inference time of 0.34 ± 0.04 s.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 9848-9859 ◽  
Author(s):  
Jia Deng ◽  
Gaoyang Pang ◽  
Zhiyu Zhang ◽  
Zhibo Pang ◽  
Huayong Yang ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Niyati Rawal ◽  
Dorothea Koert ◽  
Cigdem Turan ◽  
Kristian Kersting ◽  
Jan Peters ◽  
...  

The ability of a robot to generate appropriate facial expressions is a key aspect of perceived sociability in human-robot interaction. Yet many existing approaches rely on the use of a set of fixed, preprogrammed joint configurations for expression generation. Automating this process provides potential advantages to scale better to different robot types and various expressions. To this end, we introduce ExGenNet, a novel deep generative approach for facial expressions on humanoid robots. ExGenNets connect a generator network to reconstruct simplified facial images from robot joint configurations with a classifier network for state-of-the-art facial expression recognition. The robots’ joint configurations are optimized for various expressions by backpropagating the loss between the predicted expression and intended expression through the classification network and the generator network. To improve the transfer between human training images and images of different robots, we propose to use extracted features in the classifier as well as in the generator network. Unlike most studies on facial expression generation, ExGenNets can produce multiple configurations for each facial expression and be transferred between robots. Experimental evaluations on two robots with highly human-like faces, Alfie (Furhat Robot) and the android robot Elenoide, show that ExGenNet can successfully generate sets of joint configurations for predefined facial expressions on both robots. This ability of ExGenNet to generate realistic facial expressions was further validated in a pilot study where the majority of human subjects could accurately recognize most of the generated facial expressions on both the robots.


Sign in / Sign up

Export Citation Format

Share Document