Applications of Neuro Fuzzy Technology in Consumer Electronics Products

1995 ◽  
Vol 7 (1) ◽  
pp. 2-8
Author(s):  
Ryu Katayama ◽  

In recent years, intelligent industrial systems and consumer electronic products have been widely and intensively developed. Fuzzy logic, neural network, and neuro fuzzy technology, which integrates both approaches, are now regarded as an effective method to realize such intelligent features. In this paper, a review of the fuzzy boom in the consumer electronics market of Japan is presented. Typical applications of home appliances using fuzzy logic and neuro fuzzy technology are then described. Finally, methods and tools for developing fuzzy systems such as self-tuning and fuzzy modeling are reviewed.

Author(s):  
Chen-Sen Ouyang

Neuro-fuzzy modeling is a computing paradigm of soft computing and very efficient for system modeling problems. It integrates two well-known modeling approaches of neural networks and fuzzy systems, and therefore possesses advantages of them, i.e., learning capability, robustness, human-like reasoning, and high understandability. Up to now, many approaches have been proposed for neuro-fuzzy modeling. However, it still exists many problems need to be solved. In this chapter, the authors firstly give an introduction to neuro-fuzzy system modeling. Secondly, some basic concepts of neural networks, fuzzy systems, and neuro-fuzzy systems are introduced. Also, they review and discuss some important literatures about neuro-fuzzy modeling. Thirdly, the issue for solving two most important problems of neuro-fuzzy modeling is considered, i.e., structure identification and parameter identification. Therefore, the authors present two approaches to solve these two problems, respectively. Fourthly, the future and emerging trends of neuro-fuzzy modeling is discussed. Besides, the possible research issues about neuro-fuzzy modeling are suggested. Finally, the authors give a conclusion.


2018 ◽  
Vol 251 ◽  
pp. 03020
Author(s):  
Andrey Karpenko ◽  
Irina Petrova

The purpose of this study is to develop a model of neuro-fuzzy regulation of the microclimate in the room. The proposed model consists of an artificial neural network serving to form a comfort index PMV, a fuzzy logic controller for regulating temperature and humidity in the room. This approach makes it easy to manage these parameters through an estimate of the PMV index, which indicates the level of thermal comfort in the room.


Author(s):  
Manish Kumar ◽  
Devendra P. Garg

Design of an efficient fuzzy logic controller involves the optimization of parameters of fuzzy sets and proper choice of rule base. There are several techniques reported in recent literature that use neural network architecture and genetic algorithms to learn and optimize a fuzzy logic controller. This paper presents methodologies to learn and optimize fuzzy logic controller parameters that use learning capabilities of neural network. Concepts of model predictive control (MPC) have been used to obtain optimal signal to train the neural network via backpropagation. The strategies developed have been applied to control an inverted pendulum and results have been compared for two different fuzzy logic controllers developed with the help of neural networks. The first neural network emulates a PD controller, while the second controller is developed based on MPC. The proposed approach can be applied to learn fuzzy logic controller parameter online via the use of dynamic backpropagation. The results show that the Neuro-Fuzzy approaches were able to learn rule base and identify membership function parameters accurately.


10.14311/296 ◽  
2001 ◽  
Vol 41 (6) ◽  
Author(s):  
Abdel-Fattah Attia ◽  
P. Horáček

The main aim of this work is to optimize the parameters of the constrained membership function of the Fuzzy Logic Neural Network (FLNN). The constraints may be an indirect definition of the search ranges for every membership shape forming parameter based on 2nd order fuzzy set specifications. A particular method widely applicable in solving global optimization problems is introduced. This approach uses a Linear Adapted Genetic Algorithm (LAGA) to optimize the FLNN parameters. In this paper the derivation of a 2nd order fuzzy set is performed for a membership function of Gaussian shape, which is assumed for the neuro-fuzzy approach. The explanation of the optimization method is presented in detail on the basis of two examples.


Author(s):  
Larbi Esmahi ◽  
Kristian Williamson ◽  
Elarbi Badidi

Fuzzy logic became the core of a different approach to computing. Whereas traditional approaches to computing were precise, or hard edged, fuzzy logic allowed for the possibility of a less precise or softer approach (Klir et al., 1995, pp. 212-242). An approach where precision is not paramount is not only closer to the way humans thought, but may be in fact easier to create as well (Jin, 2000). Thus was born the field of soft computing (Zadeh, 1994). Other techniques were added to this field, such as Artificial Neural Networks (ANN), and genetic algorithms, both modeled on biological systems. Soon it was realized that these tools could be combined, and by mixing them together, they could cover their respective weaknesses while at the same time generate something that is greater than its parts, or in short, creating synergy. Adaptive Neuro-fuzzy is perhaps the most prominent of these admixtures of soft computing technologies (Mitra et al., 2000). The technique was first created when artificial neural networks were modified to work with fuzzy logic, hence the Neuro-fuzzy name (Jang et al., 1997, pp. 1-7). This combination provides fuzzy systems with adaptability and the ability to learn. It was later shown that adaptive fuzzy systems could be created with other soft computing techniques, such as genetic algorithms (Yen et al., 1998, pp. 469-490), Rough sets (Pal et al., 2003; Jensen et al., 2004, Ang et al., 2005) and Bayesian networks (Muller et al., 1995), but the Neuro-fuzzy name was widely used, so it stayed. In this chapter we are using the most widely used terminology in the field. Neuro-fuzzy is a blanket description of a wide variety of tools and techniques used to combine any aspect of fuzzy logic with any aspect of artificial neural networks. For the most part, these combinations are just extensions of one technology or the other. For example, neural networks usually take binary inputs, but use weights that vary in value from 0 to 1. Adding fuzzy sets to ANN to convert a range of input values into values that can be used as weights is considered a Neuro-fuzzy solution. This chapter will pay particular interest to the sub-field where the fuzzy logic rules are modified by the adaptive aspect of the system. The next part of this chapter will be organized as follows: in section 1 we examine models and techniques used to combine fuzzy logic and neural networks together to create Neuro-fuzzy systems. Section 2 provides an overview of the main steps involved in the development of adaptive Neuro-fuzzy systems. Section 3 concludes this chapter with some recommendations and future developments.


2011 ◽  
Vol 135-136 ◽  
pp. 1037-1043
Author(s):  
Guan Shan Hu ◽  
Hai Rong Xiao

Under the condition that the nonlinearity of ship steering model is considered and the assumption that the parameters of the model are uncertain, we proposed an adaptive control algorithm for ship course nonlinear system by incorporating the technique of neural network and fuzzy logic system. In the paper, we presented the structure and characteristics of Adaptive Neuro-Fuzzy Interference System (ANFIS), established the ship course controller, and realized an online learning algorithm to do online parameter estimation. We utilize fuzzy logic to solve the uncertainty problem of control system, neural network to optimize the controller parameters. To demonstrate the applicability of the proposed method, simulation results are presented at the end of this paper. The experiment shows that the ANFIS controller can achieve high performance control under parameter perturbation and other disturbances.


Author(s):  
D R Parhi ◽  
M K Singh

This article focuses on the navigational path analysis of mobile robots using the adaptive neuro-fuzzy inference system (ANFIS) in a cluttered dynamic environment. In the ANFIS controller, after the input layer there is a fuzzy layer and the rest of the layers are neural network layers. The adaptive neuro-fuzzy hybrid system combines the advantages of the fuzzy logic system, which deals with explicit knowledge that can be explained and understood, and those of the neural network, which deals with implicit knowledge that can be acquired by learning. The inputs to the fuzzy logic layer include the front obstacle distance, the left obstacle distance, the right obstacle distance, and target steering. A learning algorithm based on the neural network technique has been developed to tune the parameters of fuzzy membership functions, which smooth the trajectory generated by the fuzzy logic system. Using the developed ANFIS controller, the mobile robots are able to avoid static and dynamic obstacles and reach the target successfully in cluttered environments. The experimental results agree well with the simulation results; this proves the authenticity of the theory developed.


Sign in / Sign up

Export Citation Format

Share Document