scholarly journals Effect of substrate geometry on oil sorption capacity of raw and chemically modified jute fibre

Author(s):  
Mangesh D. Teli ◽  
Sanket P. Valia

<div><p><em>In this paper jute fibre was modified with three different chemical modification techniques namely acetylation using acetic anhydride, grafting using butyl acrylate monomer and fatty acid modification using oleic acid to increase the oil sorption capacity of the fibre. All the above modifications were carried out in fibrous as well as nonwoven form to study the effect of substrate geometry on oil sorption capacity. It was found that oil sorption capacity of the chemically modified jute fibres was higher than that of the raw fibres and in case of the chemically modified nonwoven it was much higher than the raw as well as modified loose fibres. Reusability of the modified substrates was also tested and it was found that all the substrates could be squeezed to recover oil and reused at least three times. </em><em>Nonwoven fabric’s substrate geometry permits easy rolling-in and rolling-out of the fabric for the recovery of the oil from the surface of the water. </em><em>Also these oil sorption-active materials being biodegradable can be used to substitute non-biodegradable synthetic materials in oil spill cleanup.</em></p></div>

2014 ◽  
Vol 624 ◽  
pp. 669-672 ◽  
Author(s):  
Xiao Hua Meng ◽  
Hui Hui Wu ◽  
Yong Chun Zeng

PP fibers are commonly used for oil spill cleanup. In order to improve the oil-sorption capacity of the PP fibers, the blended PP fiber of various MFR and unblended PP fiber of certain MFR were fabricated as sorbents by a swirl die melt-blowing device in this study. The material properties of the PP fibers were examined by scanning electron microscopy and contact-angle measurement. The oil sorption and sorption-desorption tests show that the blended PP fibers have a much higher oil-sorption capacity than the unblended PP fibers and an excellent reusability.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Viju Subramoniapillai ◽  
Govindharajan Thilagavathi

Purpose In recent years, oil spill pollution has become one of the main problems of environmental pollution. Recovering oil by means of sorbent materials is a very promising approach and has acquired more attention due to its high cleanup efficiency. Compared to synthetic fibrous sorbents, the use of natural fibers in oil spill cleanups offers several advantages including environmental friendliness, degradable features and cost-effectiveness. Therefore, studies on developing sorbents using natural fibers for oil spill cleanup applications have become a research hotspot. Design/methodology/approach This paper reviews the work conducted by several researchers in developing oil sorbents from fibers such as cattail, nettle, cotton, milkweed, kapok, populous seed fiber and Metaplexis japonica fiber. Some featured critical parameters influencing the oil sorption capacity of fibrous substrates are discussed. Oil sorption capacity and reusability performance of various fibers are also discussed. Recent developments in oil spill cleanups and test methods for oil sorbents are briefly covered. Findings The main parameters influencing the oil sorption capacity of sorbents are fiber morphological structure, fiber density (g/cc), wax (%), hollowness (%) and water contact angle. An extensive literature review showed that oil sorption capacity is highest for Metaplexis japonica fiber followed by populous seed fiber, kapok, milkweed, cotton, nettle and cattail fiber. After use, the sorbents can be buried under soil or they can also be burned so that they can be vanished from the surface without causing environmental-related issues. Originality/value This review paper aims to summarize research studies conducted related to various natural fibers for oil spill cleanups, fiber structural characteristics influencing oil sorption and recent developments in oil spill cleanups. This work will inspire future researchers with various knowledge backgrounds, particularly, from a sustainability perspective.


2015 ◽  
Vol 17 (1) ◽  
pp. 41 ◽  
Author(s):  
Ye.K. Ongarbayev ◽  
А.S. Belgibayeva ◽  
K.K. Kudaybergenov ◽  
Z.A. Mansurov

Sorbents were produced on the basis of rice husk, rubber crump and apricot stone by carbonization. They all possessed a high sorption capacity for oil and oil products. With the use of these sorbents an oil overflow was experimentally removed from the surface of the river Syrdarya (Kyzylorda). Results showed that the oil sorption capacities of carbonized rice husk, rubber crumb and apricot stone were 18, 14 and 7 g/g, respectively. The material obtained by carbonization of rice husk has very good buoyancy characteristics, high oil sorption capacity and high hydrophobicity. The effects of contact time, water temperature, amount and type of sorbents on the oil sorption capacity of the carbonized sorbents were further studied on the basis of microstructure and morphology using optical digital microscopy and scanning electron microscopy (SEM). The results of the SEM and optical microscopy studies strongly indicate that carbonization is a suitable method for improving the porous structure of the sorbents particles compared to the virgin samples. This research provides the basis for the development of a new environmental material with optimal characteristics, providing efficient sorption of oil and oil products from an aqueous medium.


Author(s):  
B. J. Dimas ◽  
S. A. Osemeahon

In the present study, the efficiency of Annona senegalensis fiber to remove crude oil from aqueous solution was evaluated. The crude Annona senegalensis (CAS), retted Annona senegalensis (RAS) and bleach Annona senegalensis (PFAS) were subjected to sorption studies to optimize their sorption capacity. The results revealed that the efficiency of sorbent to remove crude oil from water is related to the sorbent weight, contact time, initial oil concentration and temperature of sorption. It was found out that increase in sorbent weight led to increase in sorption capacity from 3.99-5.25g/g, 5.51-7.12g/g, and 5.01-6.72g/g in CAS, RAS and PFAS respectively. Increased in Initial oil concentration also increased the oil sorption capacity by 20-21% until it reach equilibrium. Sorption time was varied from 10, 20, 30, 40, 50, 60 and 70 minutes and the highest sorption capacity was recorded at 30 minutes before a gradual decreased was observed. Sorption capacity decreased with increased in temperature above 400C. The sorbent exhibited good reusability after 8 cycles, with less than 50 % reduction in sorption capacity. The kinetics of crude oil sorption onto CAS, RAS and PFAS follow the second- order model with correlation coefficients higher than 0.99. The results obtained revealed that crude oil adsorption onto the Annona senegalensis fiber can be used as an effective adsorbent to oil spill cleanup in water bodies.


2014 ◽  
Vol 70 (7) ◽  
pp. 1220-1228 ◽  
Author(s):  
Robabeh Asadpour ◽  
Nasiman Bin Sapari ◽  
Mohamed Hasnain Isa ◽  
Kalu Uka Orji

Oil spills generally cause worldwide concern due to their detrimental effects on the environment and the economy. An assortment of commercial systems has been developed to control these spills, including the use of agricultural wastes as sorbents. This work deals with raw and modified mangrove barks (Rhizophora apiculata), an industrial lignocellulosic waste, as a low cost adsorbent for oil-product-spill cleanup in the aquatic environment. Mangrove bark was modified using fatty acids (oleic acid and palmitic acid) to improve its adsorption capacity. The oil sorption capacity of the modified bark was studied and compared with that of the raw bark. Kinetic tests were conducted with a series of contact times. The influence of particle size, oil dosage, pH and temperature on oil sorption capacity was investigated. The results showed that oleic acid treated bark has a higher sorption capacity (2,860.00 ± 2.00 mg/g) than untreated bark for Tapis crude oil. A correlation between surface functional groups, morphology and surface area of the adsorbent was studied by Fourier transform infrared spectrum, field emission scanning electron microscopy images and Brunauer–Emmett–Teller analysis. Isotherm study was conducted using the Langmuir and Freundlich isotherm models. The result showed that adsorption of crude oil on treated mangrove bark could be best described by the Langmuir model.


2012 ◽  
Vol 98 ◽  
pp. 166-176 ◽  
Author(s):  
I. Uzunov ◽  
S. Uzunova ◽  
D. Angelova ◽  
A. Gigova

2009 ◽  
Vol 152 (2-3) ◽  
pp. 389-395 ◽  
Author(s):  
Stephen J. Allen ◽  
Emilia Ivanova ◽  
Bogdana Koumanova

2019 ◽  
Vol 16 (3) ◽  
pp. 1800158 ◽  
Author(s):  
Nicolás Torasso ◽  
Federico Trupp ◽  
Andrés Arias Durán ◽  
Norma D'Accorso ◽  
Diana Grondona ◽  
...  

2012 ◽  
Vol 66 (12) ◽  
pp. 2647-2652 ◽  
Author(s):  
Shaoning Li ◽  
Junfu Wei ◽  
Ao Wang ◽  
Yuexia Nie ◽  
Hang Yang ◽  
...  

In order to improve oil sorption performances, polypropylene (PP) fiber was modified through graft polymerization with butyl acrylate (BA) initiated by ultraviolet (UV) radiation in isopropanol/water mixture solution. Fourier transform infrared (FT-IR) spectra, scanning electron microscopy (SEM) and specific surface area were used to characterize the chemical and morphological changes of the PP fiber surface. Static contact angle (CA) measurements showed that the hydrophilicity of original PP fiber was enhanced after graft polymerization. The grafted fiber exhibited an excellent oil-sorption, oil-retention performance, fast saturation-sorption rate and superior reusability of oil. When the grafting degree was 15.55%, the maximum oil-sorption capacity reached 18.35 g/g, while the oil-sorption capacity of original PP fiber was only 11.54 g/g. After the tenth cycle of reuse, the grafted fiber sorbent assembly only lost 30% of its virgin sorption capacity.


Sign in / Sign up

Export Citation Format

Share Document